79 resultados para robot-assisted wireless sensor networks sensor relocation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key pre-distribution technique. Inspired by the recent proxy-based scheme in the work of Ling and Znati (2005) and Li et al. (2005), we introduce a friend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friend-based scheme performs better than the proxy-based scheme both in terms of resilience against node capture as well as in energy consumption for pairwise key establishment, making our scheme more feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since their emergence, wireless sensor networks (WSNs) have become increasingly popular in the pervasive computing industry. This is particularly true within the past five years, which has seen sensor networks being adapted for wide variety of applications. Most of these applications are restricted to ambience monitoring and military use, however, very few commercial sensor applications have been explored till date. For WSNs to be truly ubiquitous, many more commercial sensor applications are yet to be investigated. As an effort to probe for such an application, we explore the potential of using WSNs in the field of Organizational Network Analysis (ONA). In this short paper, we propose a WSN based framework for analyzing organizational networks. We describe the role of WSNs in learning relationships among the people of an organization and investigate the research challenges involved in realizing the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the classical problem of sequential detection of change in a distribution (from hypothesis 0 to hypothesis 1), where the fusion centre receives vectors of periodic measurements, with the measurements being i.i.d. over time and across the vector components, under each of the two hypotheses. In our problem, the sensor devices ("motes") that generate the measurements constitute an ad hoc wireless network. The motes contend using a random access protocol (such as CSMA/CA) to transmit their measurement packets to the fusion centre. The fusion centre waits for vectors of measurements to accumulate before taking decisions. We formulate the optimal detection problem, taking into account the network delay experienced by the vectors of measurements, and find that, under periodic sampling, the detection delay decouples into network delay and decision delay. We obtain a lower bound on the network delay, and propose a censoring scheme, where lagging sensors drop their delayed observations in order to mitigate network delay. We show that this scheme can achieve the lower bound. This approach is explored via simulation. We also use numerical evaluation and simulation to study issues such as: the optimal sampling rate for a given number of sensors, and the optimal number of sensors for a given measurement rate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report on the outcomes of a research and demonstration project on human intrusion detection in a large secure space using an ad hoc wireless sensor network. This project has been a unique experience in collaborative research, involving ten investigators (with expertise in areas such as sensors, circuits, computer systems,communication and networking, signal processing and security) to execute a large funded project that spanned three to four years. In this paper we report on the specific engineering solution that was developed: the various architectural choices and the associated specific designs. In addition to developing a demonstrable system, the various problems that arose have given rise to a large amount of basic research in areas such as geographical packet routing, distributed statistical detection, sensors and associated circuits, a low power adaptive micro-radio, and power optimising embedded systems software. We provide an overview of the research results obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a small extent sensor network for event detection, in which nodes periodically take samples and then contend over a random access network to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is network-oblivious and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is network-aware and processes measurements as they arrive, but in a time-causal order. In this case, the decision statistic depends on the network delays, whereas in the network-oblivious case, the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network-oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network-aware case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is the network state and the posterior probability of change having occurred, given the measurements received and the state of the network. The optimal regimes are studied using simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have many application scenarios where external clock synchronisation may be required because a WSN may consist of components which are not connected to each other. In this paper, we first propose a novel weighted average-based internal clock synchronisation (WICS) protocol, which synchronises all the clocks of a WSN with the clock of a reference node periodically. Based on this protocol, we then propose our weighted average-based external clock synchronisation (WECS) protocol. We have analysed the proposed protocols for maximum synchronisation error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our above theoretical claim and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronisation accuracy. A prototype implementation of the WICS protocol using a few TelosB motes also validates the above conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed SmartConnect, a tool that addresses the growing need for the design and deployment of multihop wireless relay networks for connecting sensors to a control center. Given the locations of the sensors, the traffic that each sensor generates, the quality of service (QoS) requirements, and the potential locations at which relays can be placed, SmartConnect helps design and deploy a low-cost wireless multihop relay network. SmartConnect adopts a field interactive, iterative approach, with model based network design, field evaluation and relay augmentation performed iteratively until the desired QoS is met. The design process is based on approximate combinatorial optimization algorithms. In the paper, we provide the design choices made in SmartConnect and describe the experimental work that led to these choices. Finally, we provide results from some experimental deployments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.