28 resultados para rim


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brehm and Kuhnel proved that if M-d is a combinatorial d-manifold with 3d/2 + 3 vertices and \ M-d \ is not homeomorphic to Sd then the combinatorial Morse number of M-d is three and hence d is an element of {0, 2, 4, 8, 16} and \ M-d \ is a manifold like a projective plane in the sense of Eells and Kuiper. We discuss the existence and uniqueness of such combinatorial manifolds. We also present the following result: ''Let M-n(d) be a combinatorial d-manifold with n vertices. M-n(d) satisfies complementarity if and only if d is an element of {0, 2, 4, 8, 16} with n = 3d/2 + 3 and \ M-n(d) \ is a manifold like a projective plane''.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrocene-conjugated reduced Schiff base (Fc-metH) copper(II) complexes of L-methionine and phenanthroline bases, namely, Cu(Fc-met)(B)](NO3), where B is 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2), dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip in 4), were prepared and characterized and their photocytotoxicity studied (Fc = ferrocenyl moiety). Complexes Cu(Ph-met)(B)](NO3) of the reduced Schiff base from benzaldehyde and L-methionine (Ph-metH) and B (phen in 5, dppz in 6) were prepared and used as control species. Complexes 1 and 5 were structurally characterized by X-ray crystallography. Complex 1 as a discrete monomer has a CuN3OS core with the thiomethyl group as the axial ligand. Complex 5 has a polymeric structure with a CuN3O2 core in the solid state. Complexes 5 and 6 are formulated as Cu(Ph-met)(B)(H2O)] (NO3) in an aqueous phase based on the mass spectral data. Complexes 1-4 showed the Cu(II)-Cu(I) and Fc(+)-Fc redox couples at similar to 0.0 and similar to 0.5 V vs SCE, respectively, in DMF-0.1 M (Bu4N)-N-n](ClO4). A Cu(II)-based weak d-d band near 600 nm and a relatively strong ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCl buffer (1:4 v/v). The complexes bind to calf thymus DNA, exhibit moderate chemical nuclease activity forming (OH)-O-center dot radical species, and are efficient photocleavers of pUC19 DNA in visible light of 454, 568, and 647 rim, forming (OH)-O-center dot radical as the reactive oxygen species. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells, showing an enhancement of cytotoxicity upon visible light irradiation. Significant change in the nuclear morphology of the HeLa cells was observed with 3 in visible light compared to the nonirradiated sample. Confocal imaging using 4 showed its nuclear localization within the HeLa cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile sol-gel process onto larger substrates. Temperature dependence of the process control of deposition and desired phase formations was studied in detail. Films were analyzed for complete transformation from amorphous to polycrystalline, with textured structures for stannite phase, as reflected from the X-ray diffraction and with nearly stoichiometric compositions of Cu:Co:Sn:S = 2:0:1:0:1:0:4:0 from EDAX analysis. Morphological investigations revealed that the CCTS films with larger grains, on the order of its thickness, were synthesized at higher temperature of 500 degrees C. The optimal band gap for application in photovoltaics was estimated to be 1.4 eV. Devices with SLG/CCTS/Al geometry were fabricated for real time demonstration of photoconductivity under A.M 1.5 G solar and 1064 rim infrared laser illuminations. A photodetector showed one order current amplification from similar to 1.9 X 10(-6) A in the dark to 2.2 x 10(-5) A and 9.8 X 10(-6) A under A.M 1.5 G illumination and 50 mW cm(-2) IR laser, respectively. Detector sensitivity, responsivity, external quantum efficiency, and gain were estimated as 4.2, 0.12 A/W, 14.74% and 14.77%, respectively, at 50 mW cm(-2) laser illuminations. An ON and OFF ratio of 2.5 proved that CCTS can be considered as a potential absorber in low cost photovoltaics applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(R-tpy)(cur)](ClO4) (1, 2) of curcumin (Hcur) and terpyridine ligands (R-tpy) where R is phenyl (phtpy in 1) or p-triphenylphosphonium methylphenyl bromide (C6H4CH2PPh3Br) (TPP-phtpy in 2) were prepared and characterized and their DNA photocleavage activity, photocytotoxicity and cellular localization in cancer cells (HeLa and MCF-7) were studied. Acetylacetonate (acac) complexes VO(R-tpy)(acac)](ClO4) of phtpy (3) and TPP-phtpy (4) were prepared and used as the control species. These complexes showed efficient cleavage of pUC19 DNA in visible light of 454 nm and near-IR light of 705 rim. Complexes 1 and 2 showed significant photocytotoxicity in visible light of 400-700 nm. FACS analysis showed sub-G1/G0 phase cell-cycle arrest in cancer cells when treated with 1 and 2 in visible light in comparison with the dark controls. Fluorescence microscopic studies revealed specific localization of the p-triphenylphosphonium complex 2 in the mitochondria of MCF-7 cancer cells whereas no such specificity was observed for complex 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present volume of fluid based numerical simulations of secondary breakup of a drop with high density ratio (approx. 1000) and also perform experiments by injecting monodisperse water droplets in a continuous jet of air and capture the breakup regimes, namely, bag formation, bag-stamen, multibag and shear breakup, observed in the moderate Weber number range (20-120). We observe an interesting transition regime between bag and shear breakup for We = 80, in both simulations as well as experiments, where the formation of multiple lobes, is observed, instead of a single bag, which are connected to each other via thicker rim-like threads that hold them. We show that the transition from bag to shear breakup occurs owing to the rim dynamics which shows retraction under capillary forces at We = 80, whereas the rim is sheared away with flow at We = 120 thus resulting in a backward facing bag. The drop characteristics and timescales obtained in simulations are in good agreement with experiments. The drop size distribution after the breakup shows bimodal nature for the single-bag breakup mode and a unimodal nature following lognormal distribution for higher Weber numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyurethane foams with multimodal cell distribution exhibit superior mechanical and thermal properties. A technique for generating bimodal bubble size distribution exists in the literature, but it uses supercritical conditions. In the present work, an alternative based on milder operating conditions is proposed. It is a modification of reaction injection molding (RIM), using reactants already seeded with bubbles. The number density of the seeds determines if two nucleating events can occur. A bimodal bubble size distribution is obtained when this happens A mathematical model is used to test this hypothesis by simulating water blown free rise polyurethane foams. The effects of initial concentration of bubbles, temperature of the reactants, and the weight fraction of water are studied. The study reveals that for certain concentrations of initial number of bubbles, when initial temperature and weight fraction of water are high, it is possible to obtain a second nucleation event, leading to bimodal bubble size distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 degrees C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 degrees C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.