18 resultados para retrieval time


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ozone Monitoring Instrument (OMI) aboard EOS-Aura and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Aqua fly in formation as part of the A-train. Though OMI retrieves aerosol optical depth (AOD) and aerosol absorption, it must assume aerosol layer height. The MODIS cannot retrieve aerosol absorption, but MODIS aerosol retrieval is not sensitive to aerosol layer height and with its smaller pixel size is less affected by subpixel clouds. Here we demonstrate an approach that uses MODIS-retrieved AOD to constrain the OMI retrieval, freeing OMI from making an a priori estimate of aerosol height and allowing a more direct retrieval of aerosol absorption. To predict near-UV optical depths using MODIS data we rely on the spectral curvature of the MODIS-retrieved visible and near-IR spectral AODs. Application of an OMI-MODIS joint retrieval over the north tropical Atlantic shows good agreement between OMI and MODIS-predicted AODs in the UV, which implies that the aerosol height assumed in the OMI-standard algorithm is probably correct. In contrast, over the Arabian Sea, MODIS-predicted AOD deviated from the OMI-standard retrieval, but combined OMI-MODIS retrievals substantially improved information on aerosol layer height (on the basis of validation against airborne lidar measurements). This implies an improvement in the aerosol absorption retrieval, but lack of UV absorption measurements prevents a true validation. Our study demonstrates the potential of multisatellite analysis of A-train data to improve the accuracy of retrieved aerosol products and suggests that a combined OMI-MODIS-CALIPSO retrieval has large potential to further improve assessments of aerosol absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlation dimension D 2 and correlation entropy K 2 are both important quantifiers in nonlinear time series analysis. However, use of D 2 has been more common compared to K 2 as a discriminating measure. One reason for this is that D 2 is a static measure and can be easily evaluated from a time series. However, in many cases, especially those involving coloured noise, K 2 is regarded as a more useful measure. Here we present an efficient algorithmic scheme to compute K 2 directly from a time series data and show that K 2 can be used as a more effective measure compared to D 2 for analysing practical time series involving coloured noise.