133 resultados para resin-based composite


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compression moulded Kevlar-phenolic resin composite consisting of 30 wt% continuous fibres was slid against a steel disc such that the fibre axis was normal to the sliding plane. The sliding experiments were conducted in a normal pressure range of 0.47–4.27 MPa and at a sliding speed of 0.5 ms–1. The initial sliding interaction is abrasive. With further sliding, as patches of polymer transfer film develop on the polymer pin and counterface, the interaction becomes adhesive and steady-state friction is established. The wear resistance of the polymer was found to be related to the stability of this film.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A previous study on the tribological performance of a compression-moulded aramid fibre-phenolic resin composite, containing 30% continuous fibre, showed that this composite provides a reasonable combination of the friction coefficient and wear rate to be used as a friction component, such as a brake shoe. In the present work, the effect of sliding speed on the friction and wear behaviour of this composite has been investigated. The sliding experiments were conducted in a speed range of 0.1-6 m s(-1) at two normal pressure levels of 1.0 and 4.9 MPa. The coefficient of friction was found to be stable over a wide range of sliding speeds and normal pressures. The wear of the composite was found to be insensitive to changes in the speed in the higher speed range. The results have been supplemented with scanning electron micrographs to help understand possible friction and wear mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural Health Monitoring has gained wide acceptance in the recent past as a means to monitor a structure and provide an early warning of an unsafe condition using real-time data. Utilization of structurally integrated, distributed sensors to monitor the health of a structure through accurate interpretation of sensor signals and real-time data processing can greatly reduce the inspection burden. The rapid improvement of the Fiber Optic Sensor technology for strain, vibration, ultrasonic and acoustic emission measurements in recent times makes it feasible alternative to the traditional strain gauges, PVDF and conventional Piezoelectric sensors used for Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM). Optical fiber-based sensors offer advantages over conventional strain gauges, and PZT devices in terms of size, ease of embedment, immunity from electromagnetic interference (EMI) and potential for multiplexing a number of sensors. The objective of this paper is to demonstrate the acoustic wave sensing using Extrinsic Fabry-Perot Interferometric (EFPI) sensor on a GFRP composite laminates. For this purpose experiments have been carried out initially for strain measurement with Fiber Optic Sensors on GFRP laminates with intentionally introduced holes of different sizes as defects. The results obtained from these experiments are presented in this paper. Numerical modeling has been carried out to obtain the relationship between the defect size and strain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a model for composite beam with embedded de-lamination is developed using the wavelet based spectral finite element (WSFE) method particularly for damage detection using wave propagation analysis. The simulated responses are used as surrogate experimental results for the inverse problem of detection of damage using wavelet filtering. The WSFE technique is very similar to the fast fourier transform (FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies scaling function approximation in time. Unlike FSFE formulation with periodicity assumption, the wavelet-based method allows imposition of initial values and thus is free from wrap around problems. This helps in analysis of finite length undamped structures, where the FSFE method fails to simulate accurate response. First, numerical experiments are performed to study the effect of de-lamination on the wave propagation characteristics. The responses are simulated for different de-lamination configurations for both broad-band and narrow-band excitations. Next, simulated responses are used for damage detection using wavelet analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic polymer-metal composites are soft artificial muscle-like bending actuators, which can work efficiently in wet environments such as water. Therefore, there is significant motivation for research on the development and design analysis of ionic polymer-metal composite based biomimetic underwater propulsion systems. Among aquatic animals, fishes are efficient swimmers with advantages such as high maneuverability, high cruising speed, noiseless propulsion, and efficient stabilization. Fish swimming mechanisms provide biomimetic inspiration for underwater propulsor design. Fish locomotion can be broadly classified into body and/or caudal fin propulsion and median and/or paired pectoral fin propulsion. In this article, the paired pectoral fin-based oscillatory propulsion using ionic polymer-metal composite for aquatic propulsor applications is studied. Beam theory and the concept of hydrodynamic function are used to describe the interaction between the beam and water. Furthermore, a quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to obtain hydrodynamic performance of the ionic polymer-metal composite propulsor. Dynamic characteristics of ionic polymer-metal composite fin are analyzed using numerical simulations. It is shown that the use of optimization methods can lead to significant improvement in performance of the ionic polymer-metal composite fin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Design optimisation of a helicopter rotor blade is performed. The objective is to reduce helicopter vibration and constraints are put on frequencies and aeroelastic stability. The ply angles of the D-spar and skin of the composite rotor blade with NACA 0015 aerofoil section are considered as design variables. Polynomial response surfaces and space filling experimental designs are used to generate surrogate models of the objective function with respect to cross-section properties. The stacking sequence corresponding to the optimal cross-section is found using a real-coded genetic algorithm. Ply angle discretisation of 1 degrees, 15 degrees, 30 degrees and 45 degrees are used. The mean value of the objective function is used to find the optimal blade designs and the resulting designs are tested for variance. The optimal designs show a vibration reduction of 26% to 33% from the baseline design. A substantial reduction in vibration and an aeroelastically stable blade is obtained even after accounting for composite material uncertainty.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.