347 resultados para pressure gradient


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper studies the influence of vectored suction or injection on the flow and heat transfer at the stagnation point of a two-dimensional body (a cylinder) and an axisymmetric body (a sphere) with allowance for the effects of variable gas properties. The analysis is based on the boundary-layer equations in dimensionless form for the steady compressible fluid with variable properties in the stagnation region of a two-dimensional or an axisymmetric body with tangential and normal surface mass transfer under similarity requirements. It is shown that the variation of the density-viscosity product across the boundary layer has a strong effect on the skin friction and heat transfer. This gives rise to a point of inflection which can be removed by suction and by increasing the wall temperature. The skin friction and heat transfer are significantly affected by the pressure gradient parameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solution of the steady laminar incompressible nonsimilar magneto-hydrodynamic boundary layer flow and heat transfer problem with viscous dissipation for electrically conducting fluids over two-dimensional and axisymmetric bodies with pressure gradient and magnetic field has been presented. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for flow over a cylinder and a sphere. The results indicate that the magnetic field tends to delay or prevent separation. The heat transfer strongly depends on the viscous dissipation parameter. When the dissipation parameter is positive (i.e. when the temperature of the wall is greater than the freestream temperature) and exceeds a certain value, the hot wall ceases to be cooled by the stream of cooler air because the ‘heat cushion’ provided by the frictional heat prevents cooling whereas the effect of the magnetic field is to remove the ‘heat cushion’ so that the wall continues to be cooled. The results are found to be in good agreement with those of the local similarity and local nonsimilarity methods except near the point of separation, but they are in excellent agreement with those of the difference-differential technique even near the point of separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations have been carried out of some aspects of the fine-scale structure of turbulence in grid flows, in boundary layers in a zero pressure gradient and in a boundary layer in a strong favourable pressure gradient leading to relaminarization. Using a narrow-band filter with suitable mid-band frequencies, the properties of the fine-scale structure (appearing as high frequency pulses in the filtered signal) were analysed using the variable discriminator level technique employed earlier by Rao, Narasimha & Badri Narayanan (1971). It was found that, irrespective of the type of flow, the characteristic pulse frequency (say Np) defined by Rao et al. was about 0·6 times the frequency of the zero crossings. It was also found that, over the small range of Reynolds numbers tested, the ratio of the width of the fine-scale regions to the Kolmogorov scale increased linearly with Reynolds number in grid turbulence as well as in flat-plate boundarylayer flow. Nearly lognormal distributions were exhibited by this ratio as well as by the interval between successive zero crossings. The values of Np and of the zero-crossing rate were found to be nearly constant across the boundary layer, except towards its outer edge and very near the wall. In the zero-pressure-gradient boundary-layer flow, very near the wall the high frequency pulses were found to occur mostly when the longitudinal velocity fluctuation u was positive (i.e. above the mean), whereas in the outer part of the boundary layer the pulses more often occurred when u was negative. During acceleration this correlation between the fine-scale motion and the sign of u was less marked.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the problem of ignition and extinction has been formulated for the flow of a compressible fluid with Prandtl and Schmidt numbers taken as unity. In particular, the problems of (i) a jet impinging on a wall of combustible material and (ii) the opposed jet diffusion flame have been studied. In the wall jet case, three approximations in the momentum equation namely, (i) potential flow, (ii) viscous flow, (ii) viscous incompressible with k = 1 and (iii) Lees' approximation (taking pressure gradient terms zero) are studied. It is shown that the predictions of the mass flow rates at extinction are not very sensitive to the approximations made in the momentum equation. The effects of varying the wall temperature in the case (i) and the jet temperature in the case (ii) on the extinction speeds have been studied. The effects of varying the activation energy and the free stream oxidant concentration in case (ii), have also been investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aspects of large-scale organized structures in sink flow turbulent and reverse-transitional boundary layers are studied experimentally using hot-wire anemometry. Each of the present sink flow boundary layers is in a state of 'perfect equilibrium' or 'exact self-preservation' in the sense of Townsend (The Structure of Turbulent Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta (Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1-220) and conforms to the notion of 'pure wall-flow' (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495-506), at least for the turbulent cases. It is found that the characteristic inclination angle of the structure undergoes a systematic decrease with the increase in strength of the streamwise favourable pressure gradient. Detectable wall-normal extent of the structure is found to be typically half of the boundary layer thickness. Streamwise extent of the structure shows marked increase as the favourable pressure gradient is made progressively severe. Proposals for the typical eddy forms in sink flow turbulent and reverse-transitional flows are presented, and the possibility of structural self-organization (i.e. individual hairpin vortices forming streamwise coherent hairpin packets) in these flows is also discussed. It is further indicated that these structural ideas may be used to explain, from a structural viewpoint, the phenomenon of soft relaminarization or reverse transition of turbulent boundary layers when subjected to strong streamwise favourable pressure gradients. Taylor's 'frozen turbulence' hypothesis is experimentally shown to be valid for flows in the present study even though large streamwise accelerations are involved, the flow being even reverse transitional in some cases. Possible conditions, which are required to be satisfied for the safe use of Taylor's hypothesis in pressure-gradient-driven flows, are also outlined. Measured convection velocities are found to be fairly close to the local mean velocities (typically 90% or more) suggesting that the structure gets convected downstream almost along with the mean flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, laminar separation bubbles have been characterised as being 'long' or 'short' on the basis of a two parameter 'bursting' criterion involving a pressure gradient parameter and Reynolds Number at separation. In the present work we suggest a refined bursting criterion, which takes into account not just the length of the bubble but also the maximum height of the bubble, thereby shedding some light on the less understood phenomenon of 'bursting' in laminar separation bubbles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple, sufficiently accurate and efficient method for approximate solutions of the Falkner-Skan equation is proposed here for a wide range of the pressure gradient parameter. The proposed approximate solutions are obtained utilising a known solution of another differential equation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here on the results of a series of experiments carried out on a turbulent spot in a distorted duct to study the effects of a divergence with straight streamlines preceded by a short stretch of transverse streamline curvature, both in the absence of any pressure gradient. It is found that the distortion produces substantial asymmetry in the spot: the angles at which the spot cuts across the local streamlines are altered dramatically (in contradiction of a hypothesis commonly made in transition zone modelling), and the Tollmien-Schlichting waves that accompany the wing tips of the spot are much stronger on the outside of the bend than on the inside. However there is no strong effect on the internal structure of the spot and the eddies therein, or on such propagation characteristics as overall spread rate and the celerities of the leading and trailing edges. Both lateral streamline curvature and non-homogeneity of the laminar boundary layer into which the spot propagates are shown to be strong factors responsible for the observed asymmetry. It is concluded that these factors produce chiefly a geometric distortion of the coherent structure in the spot, but do not otherwise affect its dynamics in any significant way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flow and heat transfer characteristics of a second-order fluid over a vertical wedge with buoyancy forces have been analysed. The coupled nonlinear partial differential equations governing the nonsimilar mixed convection flow have been solved numerically using Keller box method. The effects of the buoyancy parameter, viscoelastic parameter, mass transfer parameter, pressure gradient parameter, Prandtl number and viscous dissipation parameter on the skin friction and heat transfer have been examined in detail. Particular cases of the present results match exactly with those available in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.