179 resultados para piezoelectric actuation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular array of Piezoelectric Wafer Active Sensor (PWAS) has been employed to detect surface damages like corrosion using lamb waves. The array consists of a number of small PWASs of 10 mm diameter and 1 mm thickness. The advantage of a circular array is its compact arrangement and large area of coverage for monitoring with small area of physical access. Growth of corrosion is monitored in a laboratory-scale set-up using the PWAS array and the nature of reflected and transmitted Lamb wave patterns due to corrosion is investigated. The wavelet time-frequency maps of the sensor signals are employed and a damage index is plotted against the damage parameters and varying frequency of the actuation signal (a windowed sine signal). The variation of wavelet coefficient for different growth of corrosion is studied. Wavelet coefficient as function of time gives an insight into the effect of corrosion in time-frequency scale. We present here a method to eliminate the time scale effect which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the corrosion with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed for varying damage sizes and the results appear promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large single crystal of triglycine sulphate (dimension 100 mm along monoclinic b-axis and 15 mm in diameter) was grown using the unidirectional solution growth technique. The X-ray diffraction studies confirmed the growth/long axis to be b-axis (polar axis). The dielectric studies were carried out at various temperatures to establish the phase transition temperature. The frequency response of the dielectric constant, dielectric loss and impedance of the crystal along the growth axis, was monitored. These are typically characterized by strong resonance peaks in the kHz region. The piezoelectric coefficients like stiffness constant (C), elastic coefficient (S), electromechanical coupling coefficient (k) and d (31) were calculated using the resonance-antiresonance method. Polarization (P)-Electric field (E) hysteresis loops were recorded at various temperatures to find the temperature-dependent spontaneous polarization of the grown crystal. The pyroelectric coefficients were determined from the pyroelectric current measurement by the Byer and Roundy method. The ferroelectric domain patterns were recorded on (010) plane using scanning electron microscopy and optical microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrochlore phase free [Pb0.94Sr0.06] [(Mn1/3Sb2/3)(0.05)(Zr0.53Ti0.47)(0.95)] O-3 ceramics has been synthesized with pure Perovskite phase by semi-wet route using the columbite precursor method. The field dependences of the dielectric response and the conductivity have been measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 303 K to 773 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency has been performed, assuming a distribution of relaxation times. The scaling behavior of the dielectric loss spectra suggests that the distribution of the relaxation times is temperature independent. The SEM photographs of the sintered specimens present the homogenous structures and well-grown grains with a sharp grain boundary. The material exhibits tetragonal structure. When measured at frequency (100 Hz), the polarization shows a strong field dependence. Different piezoelectric figures of merit (k(p), d(33) and Q(m)) of the material have also been measured obtaining their values as 0.53, 271 pC/N and 1115, respectively, which are even higher than those of pure PZT with morphotropic phase boundary (MPB) composition. Thus the present ceramics have the optimal overall performance and are promising candidates for the various high power piezoelectric applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4769889]