31 resultados para photodynamic therapy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies in this laboratory have shown the potential of artemisinin-curcumin combination therapy in experimental malaria. In a parasite recrudescence model in mice infected with Plasmodium berghei (ANKA), a single dose of alpha, beta-arteether (ART) with three oral doses of curcumin prevented recrudescence, providing almost 95% protection. The parasites were completely cleared in blood with ART-alone (AE) or ART+curcumin (AC) treatments in the short-term, although the clearance was faster in the latter case involving increased ROS generation. But, parasites in liver and spleen were not cleared in AE or AC treatments, perhaps, serving as a reservoir for recrudescence. Parasitemia in blood reached up to 60% in AE-treated mice during the recrudescence phase, leading to death of animals. A transient increase of up to 2-3% parasitemia was observed in AC-treatment, leading to protection and reversal of splenomegaly. A striking increase in spleen mRNA levels for TLR2, IL-10 and IgG-subclass antibodies but a decrease in those for INF gamma and IL-12 was observed in AC-treatment. There was a striking increase in IL-10 and IgG subclass antibody levels but a decrease in INF gamma levels in sera leading to protection against recrudescence. AC-treatment failed to protect against recrudescence in TLR2(-/-) and IL-10(-/-) animals. IL-10 injection to AE-treated wild type mice and AC-treated TLR22/2 mice was able to prolong survival. Blood from the recrudescence phase in AE-treatment, but not from AC-treatment, was able to reinfect and kill naive animals. Sera from the recrudescence phase of AC-treated animals reacted with several parasite proteins compared to that from AE-treated animals. It is proposed that activation of TLR2-mediated innate immune response leading to enhanced IL-10 production and generation of anti-parasite antibodies contribute to protective immunity in AC-treated mice. These results indicate a potential for curcumin-based combination therapy to be tested for prevention of recrudescence in falciparum and relapse in vivax malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malaria afflicts 300 million people worldwide, with over a million deaths every year. With no immediate prospect of a vaccine against the disease, drugs are the only choice to treat it. Unfortunately, the parasite has become resistant to most antimalarials, restricting the option to use artemisinins (ARTs) for effective cure. With the use of ARTs as the front-line antimalarials, reports are already available on the possible resistance development to these drugs as well. Therefore, it has become necessary to use ART-based combination therapies to delay emergence of resistance. It is also necessary to discover new pharmacophores to eventually replace ART. Studies in our laboratory have shown that curcumin not only synergizes with ART as an antimalarial to kill the parasite, but is also uniquely able to prime the immune system to protect against parasite recrudescence in the animal model. The results indicate a potential for the use of ART curcumin combination against recrudescence/relapse in falciparum and vivax malaria. In addition, studies have also suggested the use of curcumin as an adjunct therapy against cerebral malaria. In this review we have attempted to highlight these aspects as well as the studies directed to discover new pharmacophores as potential replacements for ART.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a realistic nonlinear mathematical model for melanoma dynamics and the technique of optimal dynamic inversion (exact feedback linearization with static optimization), a multimodal automatic drug dosage strategy is proposed in this paper for complete regression of melanoma cancer in humans. The proposed strategy computes different drug dosages and gives a nonlinear state feedback solution for driving the number of cancer cells to zero. However, it is observed that when tumor is regressed to certain value, then there is no need of external drug dosages as immune system and other therapeutic states are able to regress tumor at a sufficiently fast rate which is more than exponential rate. As model has three different drug dosages, after applying dynamic inversion philosophy, drug dosages can be selected in optimized manner without crossing their toxicity limits. The combination of drug dosages is decided by appropriately selecting the control design parameter values based on physical constraints. The process is automated for all possible combinations of the chemotherapy and immunotherapy drug dosages with preferential emphasis of having maximum possible variety of drug inputs at any given point of time. Simulation study with a standard patient model shows that tumor cells are regressed from 2 x 107 to order of 105 cells because of external drug dosages in 36.93 days. After this no external drug dosages are required as immune system and other therapeutic states are able to regress tumor at greater than exponential rate and hence, tumor goes to zero (less than 0.01) in 48.77 days and healthy immune system of the patient is restored. Study with different chemotherapy drug resistance value is also carried out. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis is continuing as a problem of mankind. With evolution, MDR and XDR forms of tuberculosis have emerged from drug sensitive strain. MDR and XDR strains are resistant to most of the antibiotics, making the management more difficult. BCG vaccine is not providing complete protection against tuberculosis. Therefore new infections are spreading at a tremendous rate. At the present moment there is experimental evidence to believe that Vitamin A and Vitamin D has anti-mycobacterial property. It is in this context, we have hypothesized a host based approach using the above vitamins that can cause possible prevention and cure of tuberculosis with minimal chance of resistance or toxicity. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the ``Gain-offunction'' mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated ``opening'' resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 mu g/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 mu g/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A critical unmet need for treatment of drug-resistant tuberculosis (TB) is to find novel therapies that are efficacious, safe, and shorten the duration of treatment. Drug discovery approaches for TB primarily target essential genes of the pathogen Mycobacterium tuberculosis (Mtb) but novel strategies such as host-directed therapies and nonmicrobicidal targets are necessary to bring about a paradigm shift in treatment. Drugs targeting the host pathways and nonmicrobicidal proteins can be used only in conjunction with existing drugs as adjunct therapies. Significantly, host-directed adjunct therapies have the potential to decrease duration of treatment, as they are less prone to drug resistance, target the immune responses, and act via novel mechanism of action. Recent advances in targeting host-pathogen interactions have implicated pathways such as eicosanoid regulation and angiogenesis. Furthermore, several approved drugs such as metformin and verapamil have been identified that appear suitable for repurposing for the treatment of TB. These findings and the challenges in the area of host- and/or pathogen-directed adjunct therapies and their implications for TB therapy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial biofilms are associated with 80-90% of infections. Within the biofilm, bacteria are refractile to antibiotics, requiring concentrations >1,000 times the minimum inhibitory concentration. Proteins, carbohydrates and DNA are the major components of biofilm matrix. Pseudomonas aeruginosa (PA) biofilms, which are majorly associated with chronic lung infection, contain extracellular DNA (eDNA) as a major component. Herein, we report for the first time that L-Methionine (L-Met) at 0.5 mu M inhibits Pseudomonas aeruginosa (PA) biofilm formation and disassembles established PA biofilm by inducing DNase expression. Four DNase genes (sbcB, endA, eddB and recJ) were highly up-regulated upon L-Met treatment along with increased DNase activity in the culture supernatant. Since eDNA plays a major role in establishing and maintaining the PA biofilm, DNase activity is effective in disrupting the biofilm. Upon treatment with L-Met, the otherwise recalcitrant PA biofilm now shows susceptibility to ciprofloxacin. This was reflected in vivo, in the murine chronic PA lung infection model. Mice treated with L-Met responded better to antibiotic treatment, leading to enhanced survival as compared to mice treated with ciprofloxacin alone. These results clearly demonstrate that L-Met can be used along with antibiotic as an effective therapeutic against chronic PA biofilm infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, multifaceted clinical benefits of polymeric therapeutics have been reported. Over the past decades, cancer has been one of the leading causes of mortality in the world. Many clinically approved chemotherapeutics encounter potential challenges against deadly cancer. Moreover, safety and efficacy of anticancer agents have been limited by undesirable pharmacokinetics and biodistribution. To address these limitations, various polymer drug conjugates are being studied and developed to improve the antitumor efficacy. Among other therapeutics, polymer therapeutics are well established platforms that circumvent anticancer therapeutics from enzymatic metabolism via direct conjugation to therapeutic molecules. Interestingly, polymer therapeutics meets an unmet need of small molecules. Further clinical study showed that polymer-drug conjugation can achieve desired pharmacokinetics and biodistribution properties of several anticancer drugs. The present retrospective review mainly enlightens the most recent preclinical and clinical studies include safety, stability, pharmacokinetic behavior and distribution of polymer therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.