112 resultados para packaging techniques
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.
Resumo:
Abstract is not available.
Resumo:
One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.
Resumo:
The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variables, which are either sparse in resolution (e. g. soil moisture) or averaged over large regions (e. g. runoff). A combination of the distributed hydrological model (DHM) and remote sensing (RS) has the potential to improve resolution. Data assimilation schemes can optimally combine DHM and RS. Retrieval of hydrological variables (e. g. soil moisture) from remote sensing and assimilating it in hydrological model requires validation of algorithms using field studies. Here we present a review of methodologies developed to assimilate RS in DHM and demonstrate the application for soil moisture in a small experimental watershed in south India.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
Along with useful microorganisms, there are some that cause potential damage to the animals and plants. Detection and identification of these harmful organisms in a cost and time effective way is a challenge for the researchers. The future of detection methods for microorganisms shall be guided by biosensor, which has already contributed enormously in sensing and detection technology. Here, we aim to review the use of various biosensors, developed by integrating the biological and physicochemical/mechanical properties (of tranducers), which can have enormous implication in healthcare, food, agriculture and biodefence. We have also highlighted the ways to improve the functioning of the biosensor.
Resumo:
We address the issue of noise robustness of reconstruction techniques for frequency-domain optical-coherence tomography (FDOCT). We consider three reconstruction techniques: Fourier, iterative phase recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias and variance and obtain approximate analytical expressions under the assumption of small noise. We also perform Monte Carlo analyses and show that the experimental results are in agreement with the theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions with a smaller bias than the Fourier method. The three techniques, however, have identical variance profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
Frequency multiplication (FM) can be used to design low power frequency synthesizers. This is achieved by running the VCO at a much reduced frequency, while employing a power efficient frequency multiplier, and also thereby eliminating the first few dividers. Quadrature signals can be generated by frequency- multiplying low frequency I/Q signals, however this also multiplies the quadrature error of these signals. Another way is generating additional edges from the low-frequency oscillator (LFO) and develop a quadrature FM. This makes the I-Q precision heavily dependent on process mismatches in the ring oscillator. In this paper we examine the use of fewer edges from LFO and a single stage polyphase filter to generate approximate quadrature signals, which is then followed by an injection-locked quadrature VCO to generate high- precision I/Q signals. Simulation comparisons with the existing approach shows that the proposed method offers very good phase accuracy of 0.5deg with only a modest increase in power dissipation for 2.4 GHz IEEE 802.15.4 standard using UMC 0.13 mum RFCMOS technology.
Resumo:
Novel switching sequences can be employed in spacevector-based pulsewidth modulation (PWM) of voltage source inverters. Differentswitching sequences are evaluated and compared in terms of inverter switching loss. A hybrid PWM technique named minimum switching loss PWM is proposed, which reduces the inverter switching loss compared to conventional space vector PWM (CSVPWM) and discontinuous PWM techniques at a given average switching frequency. Further, four space-vector-based hybrid PWM techniques are proposed that reduce line current distortion as well as switching loss in motor drives, compared to CSVPWM. Theoretical and experimental results are presented.
Resumo:
Vegetative cells and zygotes of Saccharomyces carlsbergensis fixed in iodine formaldehyde acetic acid solution and stained after acid hydrolysis in hæmatoxylin, Feulgen and Giemsa show a remarkable similarity in the size and orientation of the structures in the nuclear matrix with reference to the nuclear membrane. The nucleolus described by Guilliermond may either be the chromocenter or the nucleolar equivalent.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.