105 resultados para oxygen evolution activity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sea water electrolysis is one of the promising ways to produce hydrogen since it is available in plentiful supply on the earth. However, in sea water electrolysis toxic chlorine evolution is the preferred reaction over oxygen evolution at the anode. In this work, research has been focused on the development of electrode materials with a high selectivity for oxygen evolution over chlorine evolution. Selective oxidation in sea water electrolysis has been demonstrated by using a cation-selective polymer. We have used a perm-selective membrane (Nafion®), which electrostatically repels chloride ions (Cl−) to the electrode surface and thereby enhances oxygen evolution at the anode. The efficiency and behaviour of the electrode have been characterized by means of anode current efficiency and polarization studies. The surface morphology of the electrode has been characterized by using a scanning electron microscope (SEM). The results suggest that nearly 100% oxygen evolution efficiency could be achieved when using an IrO2/Ti electrode surface-modified by a perm-selective polymer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ruthenium dioxide is deposited on stainless steel (SS) substrate by galvanostatic oxidation of Ru3+. At high current densities employed for this purpose, there is oxidation of water to oxygen, which occurs in parallel with Ru3+ oxidation. The oxygen evolution consumes a major portion of the charge. The oxygen evolution generates a high porosity to RuO2 films, which is evident from scanning electron microscopy studies. RuO2 is identified by X-ray photoelectron spectroscopy. Cyclic voltammetry and galvanostatic charge–discharge cycling studies indicate that RuO2/SS electrodes possess good capacitance properties. Specific capacitance of 276 F g−1 is obtained at current densities as high as 20 mA cm−2 (13.33 A g−1). Porous nature of RuO2 facilitates passing of high currents during charge–discharge cycling. RuO2/SS electrodes are thus useful for high power supercapacitor applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combined electrochemical method and X-ray photo electron spectroscopy (XPS) has been utilized to understand the Pd(2+)/CeO(2) interaction in Ce(1-x)Pd(x)O(2-delta) (x = 0.02). A constant positive potential (chronoamperometry) is applied to Ce(0.98)Pd(0.02)O(2-delta) working electrode which causes Ce(4+) to reduce to Ce(3+) to the extent of similar to 35%, while Pd remains in the +2 oxidation state. Electrochemically cycling this electrode between 0.0-1.2 V reverts back to the original state of the catalyst. This reversibility is attributed to the reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) electrode with no metal component reduces to CeO(2-y) (y similar to 0.4) after applying 1.2 V which is not reversible and the original composition of CeO(2) cannot be brought back in any electrochemical condition. During the electro-catalytic oxygen evolution reaction at a constant 1.2 V for 1000 s, Ce(0.98)Pd(0.02)O(2-delta) reaches a steady state composition with Pd in the +2 states and Ce(4+) : Ce(3+) in the ratio of 0.65 : 0.35. This composition can be denoted as Ce(0.63)(4+)Ce(0.35)(4+)Pd(0.02)O(2-delta-y) (y similar to 0.17). When pure CeO(2) is put under similar electrochemical condition, it never reaches the steady state composition and reduces almost to 85%. Thus, Ce(0.98)Pd(0.02)O(2-delta) forms a stable electrode for the electro-oxidation of H(2)O to O(2) unlike CeO(2) due to the metal support interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The efficiency of dephosphorisation is governed by the thermodynamic behaviour of phosphorus and oxygen in molten metal, and P2O5 and FeO in slag. The equilibrium distribution of phosphorus and oxygen, for a wide range of chemical compositions simulating the evolution of slag composition during a typical BOF blow, has been experimentally determined. A mathematical model for estimation of the activity coefficients, as a function of the chemical composition, was also attempted.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analysis of the deoxidation of liquid copper is made by use of an Ellingham-type diagram, which incorporates data now available on interactions between copper and the deoxidant in solution. To make the diagram more quantitative information is required on interactions between oxygen and the deoxidants and the activities of component oxides in slags of interest in copper smelting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solubility limit of oxygen in liquid antimony has been measured by a novel isopiestic technique in the temperature range 995--1175 deg K. The results can be expressed by the equation log c = --5500/T + 3.754 ( plus/minus 0.04) with c in at.% O and T in deg K. The oxygen potential over Sb + O alloys equilibrium with Sb2O3 has been measured by a solid state cell using a fully stabilized CaO.ZrO2 electrolyte. The cell was designed to contain the Sb + Sb2O3 mixture in a closed volume, that the vaporization of the oxide can be minimized and true equilibrium attained. The Gibbs free energy of the reaction 2 Sb(s) + 3/2 O2 = Sb2O3(s) is Delta G deg = --719560 + 274.51 T( plus/minus 500) and Sb(l) + 3/2 O2 = Sb2O3(l), Delta G deg = --704711 + ( plus/minus 500) ( Delta G deg in J/mole, T in deg K). The combination of these results with Sieverts' law yields the standard free energy of solution of oxygen in liquid antimony according to the reaction 1/2 O2 = \O\Sb,at.% as Delta G deg = --129620 + 14.23 T ( plus/minus 950). The standard enthalopy and entropy of the solution of oxygen in Sb are compared with values for other metal- oyxgen systems, and with the standard enthalpies of formation of corresponding oxides. The resulting correlations permit the estimation of the standard free energy of solution of oxygen in pure metals for which experimental information is lacking. 24 ref.--AA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oxygen concentration of liquid manganese in equilibrium with MnAl2+2xO4+3x and α−Al2O3 has been determined in the temperature range 1520 to 1875 K. The oxygen content of quenched samples, wrapped in oxygen-free nickel foil, was determined by an inert gas fusion technique. The results are combined with accurate data now available on the Gibbs energies of formation of MnO and Al2O3−saturated MnAl2+2xO4+3x to derive the oxygen content of liquid manganese in equilibrium with MnO and the Gibbs energy of solution of diatomic oxygen gas in liquid manganese. The enthalpy and entropy of solution of oxygen in manganese are compared with similar data on other metal-oxygen systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbod ihydrazide (L-1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant K-b of 4.5 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant K-b of 5.7 x 10(4) M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through O-1(2) generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation. (C) 2013 Elsevier B.V. All rights reserved.