419 resultados para optical character recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The following topics were dealt with: document analysis and recognition; multimedia document processing; character recognition; document image processing; cheque processing; form processing; music processing; document segmentation; electronic documents; character classification; handwritten character recognition; information retrieval; postal automation; font recognition; Indian language OCR; handwriting recognition; performance evaluation; graphics recognition; oriental character recognition; and word recognition

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research in the field of recognizing unlimited vocabulary, online handwritten Indic words is still in its infancy. Most of the focus so far has been in the area of isolated character recognition. In the context of lexicon-free recognition of words, one of the primary issues to be addressed is that of segmentation. As a preliminary attempt, this paper proposes a novel script-independent, lexicon-free method for segmenting online handwritten words to their constituent symbols. Feedback strategies, inspired from neuroscience studies, are proposed for improving the segmentation. The segmentation strategy has been tested on an exhaustive set of 10000 Tamil words collected from a large number of writers. The results show that better segmentation improves the overall recognition performance of the handwriting system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urea-based molecular constructs are shown for the first time to be nonlinear optically (NLO) active in solution. We demonstrate self-assembly triggered large amplification and specific anion recognition driven attenuation of the NLO activity. This orthogonal modulation along with an excellent nonlinearity-transparency trade-off makes them attractive NLO probes for studies related to weak self-assembly and anion transportation by second harmonic microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose to develop a 3-D optical flow features based human action recognition system. Optical flow based features are employed here since they can capture the apparent movement in object, by design. Moreover, they can represent information hierarchically from local pixel level to global object level. In this work, 3-D optical flow based features a re extracted by combining the 2-1) optical flow based features with the depth flow features obtained from depth camera. In order to develop an action recognition system, we employ a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). The m of McFIS is to find the decision boundary separating different classes based on their respective optical flow based features. McFIS consists of a neuro-fuzzy inference system (cognitive component) and a self-regulatory learning mechanism (meta-cognitive component). During the supervised learning, self-regulatory learning mechanism monitors the knowledge of the current sample with respect to the existing knowledge in the network and controls the learning by deciding on sample deletion, sample learning or sample reserve strategies. The performance of the proposed action recognition system was evaluated on a proprietary data set consisting of eight subjects. The performance evaluation with standard support vector machine classifier and extreme learning machine indicates improved performance of McFIS is recognizing actions based of 3-D optical flow based features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an unrestricted Kannada online handwritten character recognizer which is viable for real time applications. It handles Kannada and Indo-Arabic numerals, punctuation marks and special symbols like $, &, # etc, apart from all the aksharas of the Kannada script. The dataset used has handwriting of 69 people from four different locations, making the recognition writer independent. It was found that for the DTW classifier, using smoothed first derivatives as features, enhanced the performance to 89% as compared to preprocessed co-ordinates which gave 85%, but was too inefficient in terms of time. To overcome this, we used Statistical Dynamic Time Warping (SDTW) and achieved 46 times faster classification with comparable accuracy i.e. 88%, making it fast enough for practical applications. The accuracies reported are raw symbol recognition results from the classifier. Thus, there is good scope of improvement in actual applications. Where domain constraints such as fixed vocabulary, language models and post processing can be employed. A working demo is also available on tablet PC for recognition of Kannada words.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study different methods for prototype selection for recognizing handwritten characters of Tamil script. In the first method, cumulative pairwise- distances of the training samples of a given class are used to select prototypes. In the second method, cumulative distance to allographs of different orientation is used as a criterion to decide if the sample is representative of the group. The latter method is presumed to offset the possible orientation effect. This method still uses fixed number of prototypes for each of the classes. Finally, a prototype set growing algorithm is proposed, with a view to better model the differences in complexity of different character classes. The proposed algorithms are tested and compared for both writer independent and writer adaptation scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use optical flow based complex-valued features extracted from video sequences to recognize human actions. The optical flow features between two image planes can be appropriately represented in the Complex plane. Therefore, we argue that motion information that is used to model the human actions should be represented as complex-valued features and propose a fast learning fully complex-valued neural classifier to solve the action recognition task. The classifier, termed as, ``fast learning fully complex-valued neural (FLFCN) classifier'' is a single hidden layer fully complex-valued neural network. The neurons in the hidden layer employ the fully complex-valued activation function of the type of a hyperbolic secant function. The parameters of the hidden layer are chosen randomly and the output weights are estimated as the minimum norm least square solution to a set of linear equations. The results indicate the superior performance of FLFCN classifier in recognizing the actions compared to real-valued support vector machines and other existing results in the literature. Complex valued representation of 2D motion and orthogonal decision boundaries boost the classification performance of FLFCN classifier. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a fast learning neural network classifier for human action recognition. The proposed classifier is a fully complex-valued neural network with a single hidden layer. The neurons in the hidden layer employ the fully complex-valued hyperbolic secant as an activation function. The parameters of the hidden layer are chosen randomly and the output weights are estimated analytically as a minimum norm least square solution to a set of linear equations. The fast leaning fully complex-valued neural classifier is used for recognizing human actions accurately. Optical flow-based features extracted from the video sequences are utilized to recognize 10 different human actions. The feature vectors are computationally simple first order statistics of the optical flow vectors, obtained from coarse to fine rectangular patches centered around the object. The results indicate the superior performance of the complex-valued neural classifier for action recognition. The superior performance of the complex neural network for action recognition stems from the fact that motion, by nature, consists of two components, one along each of the axes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fringe tracking and fringe order assignment have become the central topics of current research in digital photoelasticity. Isotropic points (IPs) appearing in low fringe order zones are often either overlooked or entirely missed in conventional as well as digital photoelasticity. We aim to highlight image processing for characterizing IPs in an isochromatic fringe field. By resorting to a global analytical solution of a circular disk, sensitivity of IPs to small changes in far-field loading on the disk is highlighted. A local theory supplements the global closed-form solutions of three-, four-, and six-point loading configurations of circular disk. The local theoretical concepts developed in this paper are demonstrated through digital image analysis of isochromatics in circular disks subjected to three-and four-point loads. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-rigid molecular tweezers 1, 3 and 4 bind picric acid with more than tenfold increment in tetrachloromethane as compared to chloroform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The baculovirus expression system using the Autographa californica nuclear polyhedrosis virus (AcNPV) has been extensively utilized for high-level expression of cloned foreign genes, driven by the strong viral promoters of polyhedrin (polh) and p10 encoding genes. A parallel system using Bombyx mori nuclear polyhedrosis virus (BmNPV) is much less exploited because the choice and variety of BmNPV-based transfer vectors are limited. Using a transient expression assay, we have demonstrated here that the heterologous promoters of the very late genes polh and p10 from AcNPV function as efficiently in BmN cells as the BmNPV promoters. The location of the cloned foreign gene with respect to the promoter sequences was critical for achieving the highest levels of expression, following the order +35 > +1 > -3 > -8 nucleotides (nt) with respect to the polh or p10 start codons. We have successfully generated recombinant BmNPV harboring AcNPV promoters by homeologous recombination between AcNPV-based transfer vectors and BmNPV genomic DNA. Infection of BmN cell lines with recombinant BmNPV showed a temporal expression pattern, reaching very high levels in 60-72 h post infection. The recombinant BmNPV harboring the firefly luciferase-encoding gene under the control of AcNPV polh or p10 promoters, on infection of the silkworm larvae led to the synthesis of large quantities of luciferase. Such larvae emanated significant luminiscence instantaneously on administration of the substrate luciferin resulting in 'glowing silkworms'. The virus-infected larvae continued to glow for several hours and revealed the most abundant distribution of virus in the fat bodies. In larval expression also, the highest levels were achieved when the reporter gene was located at +35 nt of the polh.