108 resultados para nonlinear sigma model
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
A generic nonlinear mathematical model describing the human immunological dynamics is used to design an effective automatic drug administration scheme. Even though the model describes the effects of various drugs on the dynamic system, this work is confined to the drugs that kill the invading pathogen and heal the affected organ. From a system theoretic point of view, the drug inputs can be interpreted as control inputs, which can be designed based on control theoretic concepts. The controller is designed based on the principle of dynamic inversion and is found to be effective in curing the �nominal model patient� by killing the invading microbes and healing the damaged organ. A major advantage of this technique is that it leads to a closed-form state feedback form of control. It is also proved from a rigorous mathematical analysis that the internal dynamics of the system remains stable when the proposed controller is applied. A robustness study is also carried out for testing the effectiveness of the drug administration scheme for parameter uncertainties. It is observed from simulation studies that the technique has adequate robustness for many �realistic model patients� having off-nominal parameter values as well.
Resumo:
Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.
Resumo:
Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.
Resumo:
Field emission from carbon nanotubes (CNTs) in the form of arrays or thin films give rise to several strongly correlated process of electromechanical interaction and degradation. Such processes are mainly due to (1) electron-phonon interaction (2) electromechanical force field leading to stretching of CNTs (3) ballistic transport induced thermal spikes, coupled with high dynamic stress, leading to degradation of emission performance at the device scale. Fairly detailed physics based models of CNTs considering the aspects (1) and (2) above have already been developed by these authors, and numerical results indicate good agreement with experimental results. What is missing in such a system level modeling approach is the incorporation of structural defects and vacancies or charge impurities. This is a practical and important problem due to the fact that degradation of field emission performance is indeed observed in experimental I-V curves. What is not clear from these experiments is whether such degradation in the I-V response is due to dynamic reorientation of the CNTs or due to the defects or due to both of these effects combined. Non-equilibrium Green’s function based simulations using a tight-binding Hamiltonian for single CNT segment show up the localization of carrier density at various locations of the CNTs. About 11% decrease in the drive current with steady difference in the drain current in the range of 0.2-0.4V of the gate voltage was reported in literature when negative charge impurity was introduced at various locations of the CNT over a length of ~20nm. In the context of field emission from CNT tips, a simplistic estimate of defects have been introduced by a correction factor in the Fowler-Nordheim formulae. However, a more detailed physics based treatment is required, while at the same time the device-scale simulation is necessary. The novelty of our present approach is the following. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects, and subsequently, we incorporate the vacancy defects and charge impurity effects in the Green’s function based approach. Field emission induced current-voltage characteristics of a vertically aligned CNT array on a Cu-Cr substrate is then simulated using a detailed nonlinear mechanistic model of CNTs coupled with quantum hydrodynamics. An array of 10 vertically aligned and each 12 m long CNTs is considered for the device scale analysis. Defect regions are introduced randomly over the CNT length. The result shows the decrease in the longitudinal strain due to defects. Contrary to the expected influence of purely mechanical degradation, this result indicates that the charge impurity and hence weaker transport can lead to a different electromechanical force field, which ultimately can reduce the strain. However, there could be significant fluctuation in such strain field due to electron-phonon coupling. The effect of such fluctuations (with defects) is clearly evident in the field emission current history. The average current also decreases significantly due to such defects.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Resumo:
The specific objective of this paper is to develop direct digital control strategies for an ammonia reactor using quadratic regulator theory and compare the performance of the resultant control system with that under conventional PID regulators. The controller design studies are based on a ninth order state-space model obtained from the exact nonlinear distributed model using linearization and lumping approximations. The evaluation of these controllers with reference to their disturbance rejection capabilities and transient response characteristics, is carried out using hybrid computer simulation.
Resumo:
We develop a coupled nonlinear oscillator model involving magnetization and strain to explain several experimentally observed dynamical features exhibited by forced magnetostrictive ribbon. Here we show that the model recovers the observed period-doubling route to chaos as function of the dc field for a fixed ac field and quasiperiodic route to chaos as a function of the ac field, keeping the dc field constant. The model also predicts induced and suppressed chaos under the influence of an additional small-amplitude near-resonant ac field. Our analysis suggests rich dynamics in coupled order-parameter systems such as magnetomartensitic and magnetoelectric materials.
Resumo:
In this brief, decentralized sliding mode controllers that enable a connected and leaderless swarm of unmanned aerial vehicles (UAVs) to reach a consensus in altitude and heading angle are presented. In addition, sliding mode control-based autopilot designs to control those states for which consensus is not required are also presented. By equipping each UAV with this combination of controllers, it can autonomously decide on being a member of the swarm or fly independently. The controllers are designed using a coupled nonlinear dynamic model, derived for the YF-22 aircraft, where the aerodynamic forces and moments are linear functions of the states and inputs.
Resumo:
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10 degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four post Lest rig. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Self-tuning is applied to the control of nonlinear systems represented by the Hammerstein model wherein the nonlinearity is any odd-order polynomial. But control costing is not feasible in general. Initial relay control is employed to contain the deviations.
Resumo:
A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.
Resumo:
Model exact static and frequency-dependent polarizabilities, static second hyperpolarizabilities and THG coefficents of cumulenes and polyenynes, calculated within the correlated Pariser-Parr-Pople (PPP) model defined over the pi-framework are reported and compared with the results for the polyenes. It is found that for the same chain length, the polarizabilities and THG coefficients of the cumulenes are largest and those of the polyenynes smallest with the polyenes having an intermediate value. The optical gap of the infinite cumulene is lowest (0.75 eV) and is associated with a low transition dipole moment for an excitation involving transfer of an electron between the two orthogonal conjugated pi-systems. The polyenynes have the largest optical gap (4.37 eV), with the magnitude being nearly independent of the chain length. This excitation involves charge transfer between the conjugated bonds in the terminal triple bond. Chain length and frequency dependence of alpha(ij) and gamma(ijkl) of these systems are also reported. The effect of a heteroatom on the polarizability and THG coefficients of acetylenic systems is also reported. It has been found that the presence of the heteroatom reduces the polarizability and THG coefficients of these systems, an effect opposite to that found in the polyenes and cyanine dyes. This result has been associated with the different nature of the charge transfer in the acetylenic systems.
Resumo:
Quantum cell models for delocalized electrons provide a unified approach to the large NLO responses of conjugated polymers and pi-pi* spectra of conjugated molecules. We discuss exact NLO coefficients of infinite chains with noninteracting pi-electrons and finite chains with molecular Coulomb interactions V(R) in order to compare exact and self-consistent-field results, to follow the evolution from molecular to polymeric responses, and to model vibronic contributions in third-harmonic-generation spectra. We relate polymer fluorescence to the alternation delta of transfer integrals t(1+/-delta) along the chain and discuss correlated excited states and energy thresholds of conjugated polymers.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.