46 resultados para non-specific immune functions
Resumo:
Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.
Resumo:
Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.
Resumo:
Lipids are amphiphilic molecules that are composed of hydrophilic and hydrophobic regions. A typical membranous aggregate (vesicles, water-filled lipid nanospheres) is formed upon the self-organization of lipids in water from a diverse collection of amphiphiles producing a dynamic supramolecular structure that shows phase behavior and ordering as required for specific biological functions. The determination of various physical properties of lipid aggregates is the key to determining structure-function relationships. Over the years, we have designed and synthesized a wide variety of lipid molecular systems for the investigation of their membrane-forming properties and have used them for purposes such as gene delivery and enzyme activation. In this feature article, we focus on our work on various types of lipids including ion-paired amphiphiles, cholesterol-based lipids, aromatic lipids, macrocyclic lipids containing disulfide tethers; cationic dimeric lipids, and so forth. The emphasis is oil experimental design and bottom-line conclusions.
Resumo:
Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.
Resumo:
Background: Anti-idiotypic antibodies (Ab-2), which are the mirror images of idiotypic antibodies (Ab-1), may be useful as diagnostic reagents and for use as immunogen to induce antigen-specific immune responses. Methods and Results: To explore the biologic potential of Ab-2 as diagnostic reagents in allergic diseases, murine mouse (m) Ab-2 were raised by immunizing Balb/c mice with affinity purified rabbit (r) Ab-1 specific for the pollen of Parthenium hysterophorus, an allergenic weed that grows wild on the Indian subcontinent and in Australia, Mexico, and the southern United States. Affinity purified Parthenium-specific human (h)AB-1 could successfully inhibit the binding of mAb-2 to immobilized rAb-1. Further, Balb/c mice immunized with mAb-2 induced Parthenium-specific anti-anti-idiotypic IgE and IgG antibodies. Specificity of the Ab-2 was confirmed by the ability of Parthenium pollen extracts to inhibit the binding of allergen-specific IgE and IgG Ab-1 in the sera of patients with rhinitis to immobilized mAb-2. Parthenium-sensitive patients with rhinitis who had positive results on skin prick tests to Parthenium pollen extracts also responded with a positive skin reaction to mAb-2. Conclusion: Our data demonstrate that Parthenium-specific mAb-2 may be of value as surrogate allergens in allergen standardization and for in vitro diagnosis.
Resumo:
EcoP15I DNA methyltransferase (Mtase) recognizes the asymmeteric sequence CAGCAG and catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the second adenine residue. We have investigated the DNA binding properties of EcoP15I DNA Mtase using gel mobility shift assays. EcoP15I DNA Mtase binds approximately threefold more tightly to DNA containing its recognition sequence, CAGCAG, than to non-specific sequences in the absence or presence of cofactors. Interestingly, in the presence of ATP the discrimination between specific and non-specific sequences increases significantly. These results suggest for the first time a role for ATP in DNA recognition by type III restriction-modification enzymes. In addition, we have shown that bromodeoxyuridine-containing oligonucleotides form complexes with EcoP15I DNA Mtase that are crosslinked upon irradiation. More importantly, we have shown that the crosslink site is at the site of DNA binding, since it can be suppressed by an excess of unmodified oligonucleotide. EcoP15I DNA Mtase exhibited Michaelis-Menten kinetics with both unmodified and bromodeoxyuridine-substituted DNA, with a higher specificity constant for the latter. Furthermore, gel mobility shift assays showed that proteolyzed EcoP15I DNA Mtase formed a specific complex with DNA, which had similar mobility as the native protein-DNA complex. Taken together these results form the basis fora detailed structure-function analysis of EcoP15I DNA Mtase.
Resumo:
The DNA-binding properties of the EcoP15I DNA methyltransferase (M . EcoP15I; MTase) were studied using electrophoretic mobility shift assays. We show by molecular size-exclusion chromatography and dimethyl suberimidate crosslinking that M . EcoP15I is a dimer in solution. While M . EcoP15I binds approx. threefold more tightly to its recognition sequence, 5'-CAGCAG-3', than to non-specific sequences in the presence of AdoMet or its analogs, the discrimination between specific and non-specific sequences significantly increases in presence of ATP. These results suggest for the first time a role for ATP in DNA recognition by type-III restriction-modification enzymes. Furthermore, we show that although c2 EcoPI mutant MTases are defective in AdoMet binding, they are still able to bind DNA in a sequence-specific manner.
Resumo:
A study of 140 days duration was performed to examine if human male volunteers (n = 5) respond to ovine follicle stimulating hormone (oFSH) immunization (administered adsorbed on Alugel on days 1, 20, 40 and 70) by producing antibodies capable of both binding and neutralizing bioactivity of human FSH. The kinetics of antibody production for both the immunogen (oFSH) and the cross-reactive antigen (hFSH) were essentially similar, The volunteers responded only to the first two immunizations, The boosters given on days 40 and 70 were ineffective, probably because of the presence of substantial amounts of circulating antibody to oFSH. Of the antibodies generated to oFSH, 25-45% bound hFSH with a mean binding affinity of 0.65 x 10(9) +/- 0.53 M(-1). The binding capacities at the time of high (30-80 days of immunization) and low (>110 days) titres were 346 +/- 185 and 10.5 +/- 5.8 ng hFSH/ml respectively, During the period of high titre, free serum FSH (value in normal males 1-5 ng/ml) was not monitorable, A 50 mu l aliquot of the antiserum obtained from different volunteers between days 30 and 80 and on day 140 blocked binding of I-125-labelled hFSH to its receptor by 82 +/- 9.7 and 53 +/- 12.2% respectively, The antibody produced was specific for FSH, and no significant change in the values of related glycoprotein hormones (luteinizing hormone/testosterone and thyroid stimulating hormone/thyroxine) were recorded, Seminal plasma transferrin, a marker of Sertoli cell as well as of seminiferous tubular function, showed marked reduction (30-90%) following immunization with oFSH. Considering that endogenous FSH remained neutralized for approximately one sperm cycle only (65 days), the reduction in sperm counts (30-74%) exhibited by some volunteers is encouraging, Immunization with oFSH did not result in any significant changes in haematology, serum biochemistry or hormonal profiles, There was no production of antibodies capable of interacting with non-specific tissues, It is concluded that it should be possible to obtain a sustained long-term blockade of endogenous FSH action in men by using oFSH as an immunogen, This is a prerequisite for obtaining significant reduction in the quality and quantity of spermatozoa produced, thus leading to infertility.
Resumo:
We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.
Resumo:
Methods which disperse single-walled carbon nanotubes (SWNTs) in water as `debundled', while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol(+)) {Cholest-5en-3 beta-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3 beta-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3 beta-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3 beta-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol(+)) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol(+) to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol(+) suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol(+) complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol(+) formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.
Resumo:
We show that single walled carbon nanotubes (SWNTs) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate-protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge-transfer interactions with the SWNTs. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A)-mannose affinity constant to be 8.5 x 10(6) M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 mu M of a non-specific lectin peanut agglutinin, showing the high specificity of the Con A-mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNTs. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4739793]
Resumo:
Automated image segmentation techniques are useful tools in biological image analysis and are an essential step in tracking applications. Typically, snakes or active contours are used for segmentation and they evolve under the influence of certain internal and external forces. Recently, a new class of shape-specific active contours have been introduced, which are known as Snakuscules and Ovuscules. These contours are based on a pair of concentric circles and ellipses as the shape templates, and the optimization is carried out by maximizing a contrast function between the outer and inner templates. In this paper, we present a unified approach to the formulation and optimization of Snakuscules and Ovuscules by considering a specific form of affine transformations acting on a pair of concentric circles. We show how the parameters of the affine transformation may be optimized for, to generate either Snakuscules or Ovuscules. Our approach allows for a unified formulation and relies only on generic regularization terms and not shape-specific regularization functions. We show how the calculations of the partial derivatives may be made efficient thanks to the Green's theorem. Results on synthesized as well as real data are presented.
Resumo:
We investigate the problem of influence limitation in the presence of competing campaigns in a social network. Given a negative campaign which starts propagating from a specified source and a positive/counter campaign that is initiated, after a certain time delay, to limit the the influence or spread of misinformation by the negative campaign, we are interested in finding the top k influential nodes at which the positive campaign may be triggered. This problem has numerous applications in situations such as limiting the propagation of rumor, arresting the spread of virus through inoculation, initiating a counter-campaign against malicious propaganda, etc. The influence function for the generic influence limitation problem is non-submodular. Restricted versions of the influence limitation problem, reported in the literature, assume submodularity of the influence function and do not capture the problem in a realistic setting. In this paper, we propose a novel computational approach for the influence limitation problem based on Shapley value, a solution concept in cooperative game theory. Our approach works equally effectively for both submodular and non-submodular influence functions. Experiments on standard real world social network datasets reveal that the proposed approach outperforms existing heuristics in the literature. As a non-trivial extension, we also address the problem of influence limitation in the presence of multiple competing campaigns.
Resumo:
Iron(III) complexes FeL(B)] (1-4) of a tetradentate phenolate-based ligand (H3L) and biotin-conjugated dipyridophenazine bases (B), viz. 7-aminodipyrido 3,2-a: 2',3'-c]-phenazine (dppza in 1), (N-dipyrido3,2-a: 2',3'-c]-phenazino) amidobiotin (dppzNB in 2), dipyrido 3,2-a: 2',3'-c]-phenazine-11-carboxylic acid (dppzc in 3) and 2-((2-biotinamido) ethyl) amidodipyrido 3,2-a: 2',3'-c]-phenazine (dppzCB in 4) are prepared, characterized and their interaction with streptavidin and DNA and their photocytotoxicity and cellular uptake in various cells studied. The high-spin iron(III) complexes display Fe(III)/Fe(II) redox couple near -0.7V versus saturated calomel electrode in dimethyl sulfoxide-0.1M tetrabutylammonium perchlorate. The complexes show non-specific interaction with DNA as determined from the binding studies. Complexes with appended biotin moiety show similar binding to streptavidin as that of free biotin, suggesting biotin conjugation to dppz does not cause any loss in its binding affinity to streptavidin. The photocytotoxicity of the complexes is tested in HepG2, HeLa and HEK293 cell lines. Complex 2 shows higher photocytotoxicity in HepG2 cells than in HeLa or HEK293, forming reactive oxygen species. This effect is attributed to the presence of overexpressed sodium-dependent multi-vitamin transporters in HepG2 cells. Microscopic studies in HepG2 cells show internalization of the biotin complexes 2 and 4 essentially occurring by receptor-mediated endocytosis, which is similar to that of native biotin and biotin fluorescein isothiocyanate conjugate.
Resumo:
The primary structure and function of nucleoside diphosphate kinase (NDK), a substrate non-specific enzyme involved in the maintenance of nucleotide pools is also implicated to play pivotal roles in many other cellular processes. NDK is conserved from bacteria to human and forms a homotetramer or hexamer to exhibit its biological activity. However, the nature of the functional oligomeric form of the enzyme differs among different organisms. The functional form of NDKs from many bacterial systems, including that of the human pathogen, Mycobacterium tuberculosis (MtuNDK), is a hexamer, although some bacterial NDKs are tetrameric in nature. The present study addresses the oligomeric property of MsmNDK and how a dimer, the basic subunit of a functional hexamer, is stabilized by hydrogen bonds and hydrophobic interactions. Homology modeling was generated using the three-dimensional structure of MtuNDK as a template; the residues interacting at the monomer-monomer interface of MsmNDK were mapped. Using recombinant enzymes of wild type, catalytically inactive mutant, and monomer-monomer interactive mutants of MsmNDK, the stability of the dimer was verified under heat, SDS, low pH, and methanol. The predicted residues (Gln17, Ser24 and Glu27) were engaged in dimer formation, however the mutated proteins retained the ATPase and GTPase activity even after introducing single (MsmNDK- Q17A, MsmNDK-E27A, and MsmNDK-E27Q) and double (MsmNDK-E27A/Q17A) mutation. However, the monomer monomer interaction could be abolished using methanol, indicating the stabilization of the monomer-monomer interaction by hydrophobic interaction.