19 resultados para motion picture producers and directors
Resumo:
The forces that cause deformation of western North America have been debated for decades. Recent studies, primarily based on analysis of crustal stresses in the western United States, have suggested that the deformation of the region is mainly controlled by gravitational potential energy (GPE) variations and boundary loads, with basal tractions due to mantle flow playing a relatively minor role. We address these issues by modelling the deviatoric stress field over western North America from a 3-D finite element mantle circulation model with lateral viscosity variations. Our approach takes into account the contribution from both topography and shallow lithosphere structure (GPE) as well as that from deeper mantle flow in one single model, as opposed to separate lithosphere and circulation models, as has been done so far. In addition to predicting the deviatoric stresses we also jointly fit the constraints of geoid, dynamic topography and plate motion both globally and over North America, in order to ensure that the forces that arise in our models are dynamically consistent. We examine the sensitivity of the dynamic models to different lateral viscosity variations. We find that circulation models that include upper mantle slabs yield a better fit to observed plate velocities. Our results indicate that a model of GPE variations coupled with mantle convection gives the best fit to the observational constraints. We argue that although GPE variations control a large part of the deformation of the western United States, deeper mantle tractions also play a significant role. The average deviatoric stress magnitudes in the western United States range 30-40 MPa. The cratonic region exhibits higher coupling to mantle flow than the rest of the continent. We find that a relatively strong San Andreas fault gives a better fit to the observational constraints, especially that of plate velocity in western North America.
Resumo:
In this study, we present a new computational approach for studying the effect of melt convection on solidification at the micro-scale level. Models for dendritic and eutectic growth are developed on the basis of the enthalpy technique and incorporate the presence of flow in the domain. Simulation results show the growth and motion of dendrites and evolution of eutectic lamellae and their interaction with melt flow. The present study provides the foundation for development of an efficient generalized micro-scale solidification model, which can potentially be coupled with system-scale models based on the same framework.
Resumo:
We consider extremal limits of the recently constructed ``subtracted geometry''. We show that extremality makes the horizon attractive against scalar perturbations, but radial evolution of such perturbations changes the asymptotics: from a conical-box to flat Minkowski. Thus these are black holes that retain their near-horizon geometry under perturbations that drastically change their asymptotics. We also show that this extremal subtracted solution (''subttractor'') can arise as a boundary of the basin of attraction for flat space attractors. We demonstrate this by using a fairly minimal action (that has connections with STU model) where the equations of motion are integrable and we are able to find analytic solutions that capture the flow from the horizon to the asymptotic region. The subttractor is a boundary between two qualitatively different flows. We expect that these results have generalizations for other theories with charged dilatonic black holes.
Resumo:
Taxol (R) (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol (R) producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol (R) production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol (R) biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol (R) using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol (R) are discussed.