160 resultados para moment problem
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
Some recent developments with respect to the resolution of the gauge hierarchy problem in grand unified theories by supersymmetry are presented. A general argument is developed to show how global supersymmetry maintains the stability of the different mass-scales under perturbative effects.
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
The breakdown of the usual method of Fourier transforms in the problem of an external line crack in a thin infinite elastic plate is discovered and the correct solution of this problem is derived using the concept of a generalised Fourier transform of a type discussed first by Golecki [1] in connection with Flamant's problem.
Resumo:
In this paper, the results on primal methods for Bottleneck Linear Programming (BLP) problem are briefly surveyed, the primal method is presented and the degenerate case related to Bottleneck Transportation Problem (BTP) is explicitly considered. The algorithm is based on the idea of using auxiliary coefficients as is done by Garfinkel and Rao [6]. The modification presented for the BTP rectifies the defect in Hammer's method in the case of degenerate basic feasible solution. Illustrative numerical examples are also given.
Resumo:
The two-impurity Kondo problem is studied by use of perturbative scaling techniques. The physics is determined by the interplay between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the two impurity spins and the Kondo effect. In particular, for a strong ferromagnetic RKKY interaction the susceptibility exhibits three structures as the temperature is lowered, corresponding to the ferromagnetic locking together of the two impurity spins followed by a two-stage freezing out of their local moments by the conduction electrons due to the Kondo effect.
Resumo:
The usual assumption made in time minimising transportation problem is that the time for transporting a positive amount in a route is independent of the actual amount transported in that route. In this paper we make a more general and natural assumption that the time depends on the actual amount transported. We assume that the time function for each route is an increasing piecewise constant function. Four algorithms - (1) a threshold algorithm, (2) an upper bounding technique, (3) a primal dual approach, and (4) a branch and bound algorithm - are presented to solve the given problem. A method is also given to compute the minimum bottle-neck shipment corresponding to the optimal time. A numerical example is solved illustrating the algorithms presented in this paper.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.
Resumo:
The time minimising assignment problem is the problem of finding an assignment of n jobs to n facilities, one to each, which minimises the total time for completing all the jobs. The usual assumption made in these problems is that all the jobs are commenced simultaneously. In this paper two generalisations of this assumption are considered, and algorithms are presented to solve these general problems. Numerical examples are worked out illustrating the algorithms.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
Using Hilbert theory and Mindlin's couple stress theory, the problem of two-dimensional circular inhomogeneity (when the inserted material is of different size than the size of the cavity and having different elastic constants) is studiedin this paper. Stress could be bounded at infinity. The formulation is valid also for regions other then the circular ones when the matrix is finite has also been tackled. Numerical results are in conformity with the fact that the effect of couple stresses is negligible when the ratio of the smallest dimension of the body to the cahracteristic length is large.
Resumo:
By deriving the equations for an error analysis of modeling inaccuracies for the combined estimation and control problem, it is shown that the optimum estimation error is orthogonal to the actual suboptimum estimate.