17 resultados para migration studies, rural destinations, integration
Resumo:
Impedance spectroscopic studies on modified phospho-vanadate glasses containing SO42- ions have been carried out over wide range of frequency. Modulated DSC studies suggest that the addition of alkali salt makes the glass less rigid and more fragile. The frequency dependent impedance data has been used to calculate d.c conductivity and activation energies. These values are comparable with the other ionic liquids. The conductivity and relaxation phenomenon was rationalized using universal a.c conductivity power law and modulus formalism. The activation energies for relaxation mechanism was also determined using imaginary parts of electrical modulus peaks which were close to those of the d.c conductivity implying the involvement of similar energy barriers in both the processes. Kohlrausch-William-Watts (KWW) stretched exponent beta, is temperature insensitive and power law (s) exponent is temperature dependent. The enhanced conductivity in these glasses is attributed to the depolymerised structure in which migration of Na+ ions proceeds in an expanded network comprising SO42- ions in the interstitials. The effect of structure on activation energy is well supported by abinitio DFT computations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Electrical conductivity and dielectric relaxation studies on SO4 (2-) doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 (2-) ions.