23 resultados para microwave medical imaging
Resumo:
In this paper, we propose FeatureMatch, a generalised approximate nearest-neighbour field (ANNF) computation framework, between a source and target image. The proposed algorithm can estimate ANNF maps between any image pairs, not necessarily related. This generalisation is achieved through appropriate spatial-range transforms. To compute ANNF maps, global colour adaptation is applied as a range transform on the source image. Image patches from the pair of images are approximated using low-dimensional features, which are used along with KD-tree to estimate the ANNF map. This ANNF map is further improved based on image coherency and spatial transforms. The proposed generalisation, enables us to handle a wider range of vision applications, which have not been tackled using the ANNF framework. We illustrate two such applications namely: 1) optic disk detection and 2) super resolution. The first application deals with medical imaging, where we locate optic disks in retinal images using a healthy optic disk image as common target image. The second application deals with super resolution of synthetic images using a common source image as dictionary. We make use of ANNF mappings in both these applications and show experimentally that our proposed approaches are faster and accurate, compared with the state-of-the-art techniques.
Resumo:
In this report, we present a Born-ratio type of data normalization for reconstruction of initial acoustic pressure distribution in photoacoustic tomography (PAT). The normalized Born-ratio type of data is obtained as a ratio of photoacoustic pressure obtained with tissue sample in a coupling medium to the one obtained using purely coupling medium. It is shown that this type of data normalization improves the quantitation (intrinsic contrast) of the reconstructed images in comparison to the traditional techniques (unnormalized) that are currently available in PAT. Studies are carried out using various tissue samples. The robustness of the proposed method is studied at various noise levels added to the collected data. The improvement in quantitation can enable accurate estimation of pathophysiological parameter (optical absorption coefficient, a) of tissue sample under investigation leading to better sensitivity in PAT.
Resumo:
This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.
Resumo:
Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.
Resumo:
Magnetic Resonance Imaging (MRI) is a widely used non-invasive medical tool for detection and diagnosis of cancer. In recent years, MRI has witnessed significant contributions from nanotechnology to incorporate advanced features such as multimodality of nanoparticles, therapeutic delivery, specific targeting and the optical detectability for molecular imaging. Accurate composition, right scheme of surface chemistry and properly designed structure is essential for achieving desired properties of nanomaterials such as non-fouling surface, high imaging contrast, chemical stability, target specificity and/or multimodality. This review provides an overview of the recent progress in theranostic nanomaterials in imaging and the development of nanomaterial based magnetic resonance imaging of cancer. In particular, targeted theranostics is a promising approach along with its targeting strategy in cancer treatment using MRI and multimodal imaging. We also discuss recent advances in integrin mediated targeted MRI of cancer.
Resumo:
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.
Resumo:
Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.