90 resultados para methanol 1,4 bis(diphenylphosphino)butane
Resumo:
The crystal structures of copper acetate adducts with 1,4-diaza bicyclo [2.2.2.]octane and N,N-dimethyl formamide are shown to be dimeric with Cu---Cu distances of 2.633 Å and 2.616 Å respectively.
Resumo:
Examination of the symmetric Hantzsch 1,4-dihydropyridine ester derivatives of the prototypical nifedipine molecule indicates the tendency of this class of molecule to form a common packing motif. Crystal structure analysis of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic diesters and analogs reveals that they form extended chains, characterized as the C(6) packing motif, via intermolecular (amine) N-H...O=C (C3,C5 carbonyl) hydrogen bonds. In addition, all the prepared derivatives also satisfy the basic structural requirements for their high binding efficiency to the receptor. The reproducible C(6) packing motif observed among these compounds has a use in the design of solid-state materials.
Resumo:
We report here the synthesis and preliminary evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives 6(a–k) and their precursors 5(a–k) as potential chemotherapeutic agents. In each case, the structures of the compounds were determined by FTIR, 1H NMR and mass spectroscopy. Among the synthesized molecules, methyl 1-(4-methoxyphenethyl)-2-(4-fluoro-3-nitrophenyl)-1H-benzimidazole-5-carboxylate (5a) induced maximum cell death in leukemic cells with an IC50 value of 3 μM. Using FACS analysis we show that the compound 5a induces S/G2 cell cycle arrest, which was further supported by the observed down regulation of CDK2, Cyclin B1 and PCNA. The observed downregulation of proapoptotic proteins, upregulation of antiapoptotic proteins, cleavage of PARP and elevated levels of DNA strand breaks indicated the activation of apoptosis by 5a. These results suggest that 5a could be a potent anti-leukemic agent.
Resumo:
The interactions of benzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-24-crown-8 with 2,3-dichloro-5,6-dicyano- 1,4-benzoquinone have been studied in methylene chloride by using spectroscopic methods. These crown ethers from 1:l molecular complexes with the acceptor. The magnitudes of association constants and thermodynamic parameters of complexation are indicative of cooperative interaction of oxygens with the acceptor.
Resumo:
The structure of the novel product obtained from the oxidation of Abel's ketone (1a) and similar spiroketones (1b–d) with 2, 3-dichloro-5, 6-dicyano-1,4-benzoquinone has been determined on basis of spectral data (i.r., n.m.r., and mass)
Resumo:
Cyclohexa-1, 4-dienes with appropriate substituents, obtained by birch reduction of the substituted benzene, react directly with derivatives of propiolic ester or aldchyde to yield aromatic polyketides. The following compounds have been synthesized; mycophenolic acid, nidulol methyl other, the root growth hormone 3, 5-dihydroxy-2-formyl-4-mythyl-benzoic acid, antibiotic DB 2073, the macrocyclic lactones lasiodiplodin and dihydrozearalenone and the biphenyl derivatives alternario and altenusin. Polyketide anthraquinones can be made from naphthoquinone precursors.
Resumo:
3,5-Diethoxycarbonyl-1,4-dihydrocollidine (DDC) is a porphyrinogenic agent and is a powerful inducer of δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, in mouse liver. However, DDC strikingly inhibits mitochondrial as well as microsomal haem synthesis by depressing the activity of ferrochelatase in vivo. The drug on repeated administration to female mice has been found to elicit hypertrophic effects in the liver microsomes initially, but the effects observed at later stages denote either hyperplasia or increase in polyploidal cells. The microsomal protein concentration shows a striking decrease with repeated doses of the drug. The rate of microsomal protein synthesis in vivo as well as in vitro shows an increase with two injections of DDC but decreases considerably with repeated administration of the drug. The activities of NADPH-cytochrome creductase and ribonuclease are not affected in the liver microsomes of drug-treated animals when expressed per mg of microsomal protein. DDC has also been found to cause degradation of microsomal haem, which is primarily responsible for the decrease in cytochrome P-450 content. The drug also leads to a decrease in mitochondrial cytochrome c levels due to inhibition of haem synthesis and also due to degradation of mitochondrial haem at later stages. The biochemical effects of the drug are compared and discussed with those reported for allylisopropylacetamide and phenobarbital.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
The title compound, C29H20ClNOS, is a 1-substituted-3-phenylisoquinoline that crystallizes with four independent molecules in the asymmtric unit. The four molecules have similar C-S-C angles. The most noteworthy differences between the molecules relate to the inclination of the 3-phenyl subsituent with respect to the isoquinoline fused-ring [dihedral angles of 21.2 (1), 25.6 (2), 34.3 (1) and 36.5 (2)degrees].
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
The title compound, C23H16ClNOS, exhibits dihedral angles of 11.73 (1) and 66.07 (1)degrees, respectively, between the mean plane of the isoquinoline system and the attached phenyl ring, and between the isoquinoline system and the chlorophenyl ring. The dihedral angle between the phenyl and chlorophenyl rings is 54.66 (1)degrees.
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
The 1,4-dihydropyridine ring in the title hydrate, C17H18BrNO2 center dot H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)degrees]. In the crystal packing, supramolecular arrays mediated by N-H center dot center dot center dot O-water and O-water-H center dot center dot center dot O-carbonyl hydrogen bonding are formed in the bc plane. A highly disordered solvent molecule is present within a molecular cavity defined by the organic and water molecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.