19 resultados para mega-event


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrin obtained from the plant Abrus precatorius inhibits protein synthesis and also triggers apoptosis in cells. Previous studies from our laboratory suggested a link between these two events. Using an active site mutant of abrin A-chain which exhibits 225-fold lower protein synthesis inhibitory activity than the wild-type abrin A-chain, we demonstrate in this study that inhibition of protein synthesis induced by abrin is the major factor triggering unfolded protein response leading to apoptosis. Since abrin A-chain requires the B-chain for internalization into cells, the wild-type and mutant recombinant abrin A-chains were conjugated to native ricin B-chain to generate hybrid toxins, and the toxic effects of the two conjugates were compared. The rate of inhibition of protein synthesis mediated by the mutant ricin B-rABRA (R167L) conjugate was slower than that of the wild-type ricin B-rABRA conjugate as expected. The mutant conjugate activated p38MAPK and caspase-3 similar to its wild-type counterpart although at later time points. Overall, these results confirm that inhibition of protein synthesis is the major event contributing to abrin-mediated apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most pattern mining methods yield a large number of frequent patterns, and isolating a small relevant subset of patterns is a challenging problem of current interest. In this paper, we address this problem in the context of discovering frequent episodes from symbolic time-series data. Motivated by the Minimum Description Length principle, we formulate the problem of selecting relevant subset of patterns as one of searching for a subset of patterns that achieves best data compression. We present algorithms for discovering small sets of relevant non-redundant episodes that achieve good data compression. The algorithms employ a novel encoding scheme and use serial episodes with inter-event constraints as the patterns. We present extensive simulation studies with both synthetic and real data, comparing our method with the existing schemes such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms on event sequences from a composable conveyor system; this system represents a new application area where use of frequent patterns for compressing the event sequence is likely to be important for decision support and control.