39 resultados para margin
Resumo:
An application of direct methods to dynamic security assessment of power systems using structure-preserving energy functions (SPEF) is presented. The transient energy margin (TEM) is used as an index for checking the stability of the system as well as ranking the contigencies based on their severity. The computation of the TEM requires the evaluation of the critical energy and the energy at fault clearing. Usually this is done by simulating the faulted trajectory, which is time-consuming. In this paper, a new algorithm which eliminates the faulted trajectory estimation is presented to calculate the TEM. The system equations and the SPEF are developed using the centre-of-inertia (COI) formulation and the loads are modelled as arbitrary functions of the respective bus voltages. The critical energy is evaluated using the potential energy boundary surface (PEBS) method. The method is illustrated by considering two realistic power system examples.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
Observational studies indicate that the convective activity of the monsoon systems undergo intraseasonal variations with multi-week time scales. The zone of maximum monsoon convection exhibits substantial transient behavior with successive propagating from the North Indian Ocean to the heated continent. Over South Asia the zone achieves its maximum intensity. These propagations may extend over 3000 km in latitude and perhaps twice the distance in longitude and remain as coherent entities for periods greater than 2-3 weeks. Attempts to explain this phenomena using simple ocean-atmosphere models of the monsoon system had concluded that the interactive ground hydrology so modifies the total heating of the atmosphere that a steady state solution is not possible, thus promoting lateral propagation. That is, the ground hydrology forces the total heating of the atmosphere and the vertical velocity to be slightly out of phase, causing a migration of the convection towards the region of maximum heating. Whereas the lateral scale of the variations produced by the Webster (1983) model were essentially correct, they occurred at twice the frequency of the observed events and were formed near the coastal margin, rather than over the ocean. Webster's (1983) model used to pose the theories was deficient in a number of aspects. Particularly, both the ground moisture content and the thermal inertia of the model were severely underestimated. At the same time, the sea surface temperatures produced by the model between the equator and the model's land-sea boundary were far too cool. Both the atmosphere and the ocean model were modified to include a better hydrological cycle and ocean structure. The convective events produced by the modified model possessed the observed frequency and were generated well south of the coastline. The improved simulation of monsoon variability allowed the hydrological cycle feedback to be generalized. It was found that monsoon variability was constrained to lie within the bounds of a positive gradient of a convective intensity potential (I). The function depends primarily on the surface temperature, the availability of moisture and the stability of the lower atmosphere which varies very slowly on the time scale of months. The oscillations of the monsoon perturb the mean convective intensity potential causing local enhancements of the gradient. These perturbations are caused by the hydrological feedbacks, discussed above, or by the modification of the air-sea fluxes caused by variations of the low level wind during convective events. The final result is the slow northward propagation of convection within an even slower convective regime. The ECMWF analyses show very similar behavior of the convective intensity potential. Although it is considered premature to use the model to conduct simulations of the African monsoon system, the ECMWF analysis indicates similar behavior in the convective intensity potential suggesting, at least, that the same processes control the low frequency structure of the African monsoon. The implications of the hypotheses on numerical weather prediction of monsoon phenomenon are discussed.
Resumo:
The amount of reactive power margin available in a system determines its proximity to voltage instability under normal and emergency conditions. More the reactive power margin, better is the systems security and vice-versa. A hypothetical way of improving the reactive margin of a synchronous generator is to reduce the real power generation within its mega volt-ampere (MVA) ratings. This real power generation reduction will affect its power contract agreements entered in the electricity market. Owing to this, the benefit that the generator foregoes will have to be compensated by paying them some lost opportunity cost. The objective of this study is three fold. Firstly, the reactive power margins of the generators are evaluated. Secondly, they are improved using a reactive power optimization technique and optimally placed unified power flow controllers. Thirdly, the reactive power capacity exchanges along the tie-lines are evaluated under base case and improved conditions. A detailed analysis of all the reactive power sources and sinks scattered throughout the network is carried out in the study. Studies are carried out on a real life, three zone, 72-bus equivalent Indian southern grid considering normal and contingency conditions with base case operating point and optimised results presented.
Resumo:
We investigate the following problem: given a set of jobs and a set of people with preferences over the jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M is popular if there is no matching M' such that more people prefer M' to M than the other way around. Determining whether a given instance admits a popular matching and, if so, finding one, was studied by Abraham et al. (SIAM J. Comput. 37(4):1030-1045, 2007). If there is no popular matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of unpopularity-unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). McCutchen recently showed that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does not admit a popular matching, then we have u(M) >= 2 for all matchings M in G. Here we show that a matching M that achieves u(M) = 2 can be computed in O(m root n) time (where m is the number of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all people. We also describe a sequence of graphs: H = H(2), H(3), ... , H(k) such that if H(k) admits a matching that matches all people, then we can compute in O(km root n) time a matching M such that u(M) <= k - 1 and g(M) <= n(1 - 2/k). Simulation results suggest that our algorithm finds a matching with low unpopularity in random instances.
Resumo:
In this paper, we present dynamic voltage and frequency Managed 256 x 64 SRAM block in 65 nm technology, for frequency ranging from 100 MHz to 1 GHz. The total energy is minimized for any operating frequency in the above range and leakage energy is minimized during standby mode. Since noise margin of SRAM cell deteriorates at low voltages, we propose static noise margin improvement circuitry, which symmetrizes the SRAM cell by controlling the body bias of pull down NMOS transistor. We used a 9T SRAM cell that isolates Read and hold noise margin and has less leakage. We have implemented an efficient technique of pushing address decoder into zigzag- super-cut-off in stand-by mode without affecting its performance in active mode of operation. The read bit line (RBL) voltage drop is controlled and pre-charge of bit lines is done only when needed for reducing power wastage.
Resumo:
Learning to rank from relevance judgment is an active research area. Itemwise score regression, pairwise preference satisfaction, and listwise structured learning are the major techniques in use. Listwise structured learning has been applied recently to optimize important non-decomposable ranking criteria like AUC (area under ROC curve) and MAP(mean average precision). We propose new, almost-lineartime algorithms to optimize for two other criteria widely used to evaluate search systems: MRR (mean reciprocal rank) and NDCG (normalized discounted cumulative gain)in the max-margin structured learning framework. We also demonstrate that, for different ranking criteria, one may need to use different feature maps. Search applications should not be optimized in favor of a single criterion, because they need to cater to a variety of queries. E.g., MRR is best for navigational queries, while NDCG is best for informational queries. A key contribution of this paper is to fold multiple ranking loss functions into a multi-criteria max-margin optimization.The result is a single, robust ranking model that is close to the best accuracy of learners trained on individual criteria. In fact, experiments over the popular LETOR and TREC data sets show that, contrary to conventional wisdom, a test criterion is often not best served by training with the same individual criterion.
Resumo:
Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.
Resumo:
The Indian Ocean earthquake of 26 December 2004 led to significant ground deformation in the Andaman and Nicobar region, accounting for ~800 km of the rupture. Part of this article deals with coseismic changes along these islands, observable from coastal morphology, biological indicators, and Global Positioning System (GPS) data. Our studies indicate that the islands south of 10° N latitude coseismically subsided by 1–1.5 m, both on their eastern and western margins, whereas those to the north showed a mixed response. The western margin of the Middle Andaman emerged by >1 m, and the eastern margin submerged by the same amount. In the North Andaman, both western and eastern margins emerged by >1 m. We also assess the pattern of long-term deformation (uplift/subsidence) and attempt to reconstruct earthquake/tsunami history, with the available data. Geological evidence for past submergence includes dead mangrove vegetation dating to 740 ± 100 yr B.P., near Port Blair and peat layers at 2–4 m and 10–15 m depths observed in core samples from nearby locations. Preliminary paleoseismological/tsunami evidence from the Andaman and Nicobar region and from the east coast of India, suggest at least one predecessor for the 2004 earthquake 900–1000 years ago. The history of earthquakes, although incomplete at this stage, seems to imply that the 2004-type earthquakes are infrequent and follow variable intervals
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
Artificial Neural Networks (ANNs) have recently been proposed as an alterative method for salving certain traditional problems in power systems where conventional techniques have not achieved the desired speed, accuracy or efficiency. This paper presents application of ANN where the aim is to achieve fast voltage stability margin assessment of power network in an energy control centre (ECC), with reduced number of appropriate inputs. L-index has been used for assessing voltage stability margin. Investigations are carried out on the influence of information encompassed in input vector and target out put vector, on the learning time and test performance of multi layer perceptron (MLP) based ANN model. LP based algorithm for voltage stability improvement, is used for generating meaningful training patterns in the normal operating range of the system. From the generated set of training patterns, appropriate training patterns are selected based on statistical correlation process, sensitivity matrix approach, contingency ranking approach and concentric relaxation method. Simulation results on a 24 bus EHV system, 30 bus modified IEEE system, and a 82 bus Indian power network are presented for illustration purposes.
Intelligent Approach for Fault Diagnosis in Power Transmission Systems Using Support Vector Machines
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.
Resumo:
In many real world prediction problems the output is a structured object like a sequence or a tree or a graph. Such problems range from natural language processing to compu- tational biology or computer vision and have been tackled using algorithms, referred to as structured output learning algorithms. We consider the problem of structured classifi- cation. In the last few years, large margin classifiers like sup-port vector machines (SVMs) have shown much promise for structured output learning. The related optimization prob -lem is a convex quadratic program (QP) with a large num-ber of constraints, which makes the problem intractable for large data sets. This paper proposes a fast sequential dual method (SDM) for structural SVMs. The method makes re-peated passes over the training set and optimizes the dual variables associated with one example at a time. The use of additional heuristics makes the proposed method more efficient. We present an extensive empirical evaluation of the proposed method on several sequence learning problems.Our experiments on large data sets demonstrate that the proposed method is an order of magnitude faster than state of the art methods like cutting-plane method and stochastic gradient descent method (SGD). Further, SDM reaches steady state generalization performance faster than the SGD method. The proposed SDM is thus a useful alternative for large scale structured output learning.
Resumo:
The safety of an in-service brick arch railway bridge is assessed through field testing and finite-element analysis. Different loading test train configurations have been used in the field testing. The response of the bridge in terms of displacements, strains, and accelerations is measured under the ambient and design train traffic loading conditions. Nonlinear fracture mechanics-based finite-element analyses are performed to assess the margin of safety. A parametric study is done to study the effects of tensile strength on the progress of cracking in the arch. Furthermore, a stability analysis to assess collapse of the arch caused by lateral movement at the springing of one of the abutments that is elastically supported is carried out. The margin of safety with respect to cracking and stability failure is computed. Conclusions are drawn with some remarks on the state of the bridge within the framework of the information available and inferred information. DOI: 10.1061/(ASCE)BE.1943-5592.0000338. (C) 2013 American Society of Civil Engineers.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.