199 resultados para lump sum
Resumo:
Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm. (C) 2014 Optical Society of America
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
We examine the deflected mirage mediation supersymmetry breaking (DMMSB) scenario, which combines three supersymmetry breaking scenarios, namely anomaly mediation, gravity mediation and gauge mediation using the one-loop renormalization group invariants (RGIs). We examine the effects on the RGIs at the threshold where the gauge messengers emerge, and derive the supersymmetry breaking parameters in terms of the RGIs. We further discuss whether the supersymmetry breaking mediation mechanism can be determined using a limited set of invariants, and derive sum rules valid for DMMSB below the gauge messenger scale. In addition we examine the implications of the measured Higgs mass for the DMMSB spectrum.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we study sum secrecy rate in multicarrier decode-and-forward relay beamforming. We obtain the optimal source power and relay weights on each subcarrier which maximize the sum secrecy rate. For a given total power on a given subcarrier k, P-0(k), we reformulate the optimization problem by relaxing the rank-1 constraint on the complex positive semidefinite relay weight matrix, and solve using semidefinite programming. We analytically prove that the solution to the relaxed optimization problem is indeed rank 1. We show that the subcarrier secrecy rate, R-s (P-0(k)), is a concave function in total power P-0(k) if R-s (P-0(k)) > 0 for any P-0(k) > 0. Numerical results show that the sum secrecy rate with optimal power allocation across subcarriers is more than the sum secrecy rate with equal power allocation. We also propose a low complexity suboptimal power allocation scheme which outperforms equal power allocation scheme.
Resumo:
We have studied two person stochastic differential games with multiple modes. For the zero-sum game we have established the existence of optimal strategies for both players. For the nonzero-sum case we have proved the existence of a Nash equilibrium.
Resumo:
Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.
Resumo:
KIRCHHOFF’S theory [1] and the first-order shear deformation theory (FSDT) [2] of plates in bending are simple theories and continuously used to obtain design information. Within the classical small deformation theory of elasticity, the problem consists of determining three displacements, u, v, and w, that satisfy three equilibrium equations in the interior of the plate and three specified surface conditions. FSDT is a sixth-order theory with a provision to satisfy three edge conditions and maintains, unlike in Kirchhoff’s theory, independent linear thicknesswise distribution of tangential displacement even if the lateral deflection, w, is zero along a supported edge. However, each of the in-plane distributions of the transverse shear stresses that are of a lower order is expressed as a sum of higher-order displacement terms. Kirchhoff’s assumption of zero transverse shear strains is, however, not a limitation of the theory as a first approximation to the exact 3-D solution.
Resumo:
We study a zero sum differential game of mixed type where each player uses both control and stopping times. Under certain conditions we show that the value function for this problem exists and is the unique viscosity solution of the corresponding variational inequalities. We also show the existence of saddle point equilibrium for a special case of differential game.
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
Given a plant P, we consider the problem of designing a pair of controllers C1 and C2 such that their sum stabilizes P, and in addition, each of them also stabilizes P should the other one fail. This is referred to as the reliable stabilization problem. It is shown that every strongly stabilizable plant can be reliably stabilized; moreover, one of the two controllers can be specified arbitrarily, subject only to the constraint that it should be stable. The stabilization technique is extended to reliable regulation.
Resumo:
Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant GA, as well as the Cabibbo coupling constants in the SU3-symmetric limit (ms=0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be ≊0, or D/(F+D)≊(7/12). .AE
Resumo:
The distribution of black leaf nodes at each level of a linear quadtree is of significant interest in the context of estimation of time and space complexities of linear quadtree based algorithms. The maximum number of black nodes of a given level that can be fitted in a square grid of size 2n × 2n can readily be estimated from the ratio of areas. We show that the actual value of the maximum number of nodes of a level is much less than the maximum obtained from the ratio of the areas. This is due to the fact that the number of nodes possible at a level k, 0≤k≤n − 1, should consider the sum of areas occupied by the actual number of nodes present at levels k + 1, k + 2, …, n − 1.
Resumo:
Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.