112 resultados para largest finite-time Lyapunov exponent
Resumo:
The predictability of a chaotic series is limited to a few future time steps due to its sensitivity to initial conditions and the exponential divergence of the trajectories. Over the years, streamflow has been considered as a stochastic system in many approaches. In this study, the chaotic nature of daily streamflow is investigated using autocorrelation function, Fourier spectrum, correlation dimension method (Grassberger-Procaccia algorithm) and false nearest neighbor method. Embedding dimensions of 6-7 obtained indicates the possible presence of low-dimensional chaotic behavior. The predictability of the system is estimated by calculating the system’s Lyapunov exponent. A positive maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable with a maximum predictability of only 6 days. These results give a positive indication towards considering streamflow as a low dimensional chaotic system than as a stochastic system.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
The predictability of a chaotic series is limited to a few future time steps due to its sensitivity to initial conditions and the exponential divergence of the trajectories. Over the years, streamflow has been considered as a stochastic system in many approaches. In this study, the chaotic nature of daily streamflow is investigated using autocorrelation function, Fourier spectrum, correlation dimension method (Grassberger-Procaccia algorithm) and false nearest neighbor method. Embedding dimensions of 6-7 obtained indicates the possible presence of low-dimensional chaotic behavior. The predictability of the system is estimated by calculating the system's Lyapunov exponent. A positive maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable with a maximum predictability of only 6 days. These results give a positive indication towards considering streamflow as a low dimensional chaotic system than as a stochastic system.
Resumo:
In this paper, three dimensional impact angle control guidance laws are proposed for stationary targets. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal 2-dimensional planes, the guidance laws are derived using the coupled dynamics. These guidance laws are designed using principles of conventional as well as nonsingular terminal sliding mode control theory. The guidance law based on nonsingular terminal sliding mode guarantees finite time convergence of interceptor to the desired impact angle. In order to derive the guidance laws, multi-dimension switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance law.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem.
Resumo:
A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.
Resumo:
We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.
Resumo:
We extend current research in the area of 'sensorless' control of induction motors by presenting two observers based on first- and second-order sliding mode control theories for the simultaneous estimation of flux and speed. We base the observers on the stator-flux model of the motor instead of the usual rotor-flux model mainly because of the uncertain rotor resistance that plays a significant role in the latter. By designing the observers as if they are sliding mode controllers, we lend the properties of parameter insensitive closed-loop dynamics and finite time convergence to the stator flux and speed estimation schemes. We also present simulation and experimental results to validate the operation of the observers.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
Surface melting by a stationary, pulsed laser has been modelled by the finite element method. The role of the surface tension driven convection is investigated in detail. Numerical results are presented for a triangular laser pulse of durations 10, 50 and 200 ms. Though the magnitude of the velocity is high due to the surface tension forces, the present results indicate that a finite time is required for convection to affect the temperature distribution within the melt pool. The effect of convection is very significant for pulse durations longer than 10 ms.
Resumo:
Competition for available resources is natural amongst coexisting species, and the fittest contenders dominate over the rest in evolution. The. dynamics of this selection is studied using a simple linear model. It has similarities to features of quantum computation, in particular conservation laws leading to destructive interference. Compared to an altruistic scenario, competition introduces instability and eliminates the weaker species in a finite time.
Resumo:
In this article, finite-time consensus algorithms for a swarm of self-propelling agents based on sliding mode control and graph algebraic theories are presented. Algorithms are developed for swarms that can be described by balanced graphs and that are comprised of agents with dynamics of the same order. Agents with first and higher order dynamics are considered. For consensus, the agents' inputs are chosen to enforce sliding mode on surfaces dependent on the graph Laplacian matrix. The algorithms allow for the tuning of the time taken by the swarm to reach a consensus as well as the consensus value. As an example, the case when a swarm of first-order agents is in cyclic pursuit is considered.
Resumo:
In this paper, sliding-mode-control-based guidance laws to intercept stationary, constant-velocity, and maneuvering targets at a desired impact angle are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the missile's lateral acceleration to enforce terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. The conditions for capturability are also presented. In addition, by considering a three-degree-of-freedom linear-interceptor dynamic model and by following the procedure used to design a dynamic sliding-mode controller, the interceptor autopilot is designed as a simple static controller to track the lateral acceleration generated by the guidance law. Numerical simulation results are presented to validate the proposed guidance laws and the autopilot design for different initial engagement geometries and impact angles.
Resumo:
We consider the problem of devising incentive strategies for viral marketing of a product. In particular, we assume that the seller can influence penetration of the product by offering two incentive programs: a) direct incentives to potential buyers (influence) and b) referral rewards for customers who influence potential buyers to make the purchase (exploit connections). The problem is to determine the optimal timing of these programs over a finite time horizon. In contrast to algorithmic perspective popular in the literature, we take a mean-field approach and formulate the problem as a continuous-time deterministic optimal control problem. We show that the optimal strategy for the seller has a simple structure and can take both forms, namely, influence-and-exploit and exploit-and-influence. We also show that in some cases it may optimal for the seller to deploy incentive programs mostly for low degree nodes. We support our theoretical results through numerical studies and provide practical insights by analyzing various scenarios.