25 resultados para knowledge mobilization
Resumo:
Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
Assembly is an important part of the product development process. To avoid potential issues during assembly in specialized domains such as aircraft assembly, expert knowledge to predict such issues is helpful. Knowledge based systems can act as virtual experts to provide assistance. Knowledge acquisition for such systems however, is a challenge, and this paper describes one part of an ongoing research to acquire knowledge through a dialog between an expert and a knowledge acquisition system. In particular this paper discusses the use of a situation model for assemblies to present experts with a virtual assembly and help them locate the specific context of the knowledge they provide to the system.
Resumo:
In many applications, when communicating with a host, we may or may not be concerned about the privacy of the data but are mainly concerned about the integrity of data being transmitted. This paper presents a simple algorithm based on zero knowledge proof by which the receiver can confirm the integrity of data without the sender having to send the digital signature of the message directly. Also, if the same document is sent across by the same user multiple times, this scheme results in different digital signature each time thus making it a practical one-time signature scheme.
Resumo:
In the domain of manual mechanical assembly, expert knowledge is an important means of supporting assembly planning that leads to fewer issues during actual assembly. Knowledge based systems can be used to provide assembly planners with expert knowledge as advice. However, acquisition of knowledge remains a difficult task to automate, while manual acquisition is tedious, time-consuming, and requires engagement of knowledge engineers with specialist knowledge to understand and translate expert knowledge. This paper describes the development, implementation and preliminary evaluation of a method that asks a series of questions to an expert, so as to automatically acquire necessary diagnostic and remedial knowledge as rules for use in a knowledge based system for advising assembly planners diagnose and resolve issues. The method, called a questioning procedure, organizes its questions around an assembly situation which it presents to the expert as the context, and adapts its questions based on the answers it receives from the expert. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The broader goal of the research being described here is to automatically acquire diagnostic knowledge from documents in the domain of manual and mechanical assembly of aircraft structures. These documents are treated as a discourse used by experts to communicate with others. It therefore becomes possible to use discourse analysis to enable machine understanding of the text. The research challenge addressed in the paper is to identify documents or sections of documents that are potential sources of knowledge. In a subsequent step, domain knowledge will be extracted from these segments. The segmentation task requires partitioning the document into relevant segments and understanding the context of each segment. In discourse analysis, the division of a discourse into various segments is achieved through certain indicative clauses called cue phrases that indicate changes in the discourse context. However, in formal documents such language may not be used. Hence the use of a domain specific ontology and an assembly process model is proposed to segregate chunks of the text based on a local context. Elements of the ontology/model, and their related terms serve as indicators of current context for a segment and changes in context between segments. Local contexts are aggregated for increasingly larger segments to identify if the document (or portions of it) pertains to the topic of interest, namely, assembly. Knowledge acquired through such processes enables acquisition and reuse of knowledge during any part of the lifecycle of a product.
Resumo:
Online Social Networks (OSNs) facilitate to create and spread information easily and rapidly, influencing others to participate and propagandize. This work proposes a novel method of profiling Influential Blogger (IB) based on the activities performed on one's blog documents who influences various other bloggers in Social Blog Network (SBN). After constructing a social blogging site, a SBN is analyzed with appropriate parameters to get the Influential Blog Power (IBP) of each blogger in the network and demonstrate that profiling IB is adequate and accurate. The proposed Profiling Influential Blogger (PIB) Algorithm survival rate of IB is high and stable. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).