210 resultados para k-Error linear complexity
Resumo:
The minimum distance of linear block codes is one of the important parameter that indicates the error performance of the code. When the code rate is less than 1/2, efficient algorithms are available for finding minimum distance using the concept of information sets. When the code rate is greater than 1/2, only one information set is available and efficiency suffers. In this paper, we investigate and propose a novel algorithm to find the minimum distance of linear block codes with the code rate greater than 1/2. We propose to reverse the roles of information set and parity set to get virtually another information set to improve the efficiency. This method is 67.7 times faster than the minimum distance algorithm implemented in MAGMA Computational Algebra System for a (80, 45) linear block code.
Resumo:
For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.
Resumo:
A single source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the symbols received at their incoming edges on their outgoing edges. In this work, we introduce network-error correction for single source, acyclic, unit-delay, memory-free networks with coherent network coding for multicast. A convolutional code is designed at the source based on the network code in order to correct network- errors that correspond to any of a given set of error patterns, as long as consecutive errors are separated by a certain interval which depends on the convolutional code selected. Bounds on this interval and the field size required for constructing the convolutional code with the required free distance are also obtained. We illustrate the performance of convolutional network error correcting codes (CNECCs) designed for the unit-delay networks using simulations of CNECCs on an example network under a probabilistic error model.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
Suppose G = (V, E) is a simple graph and k is a fixed positive integer. A subset D subset of V is a distance k-dominating set of G if for every u is an element of V. there exists a vertex v is an element of D such that d(G)(u, v) <= k, where d(G)(u, v) is the distance between u and v in G. A set D subset of V is a distance k-paired-dominating set of G if D is a distance k-dominating set and the induced subgraph GD] contains a perfect matching. Given a graph G = (V, E) and a fixed integer k > 0, the MIN DISTANCE k-PAIRED-DOM SET problem is to find a minimum cardinality distance k-paired-dominating set of G. In this paper, we show that the decision version of MIN DISTANCE k-PAIRED-DOM SET iS NP-complete for undirected path graphs. This strengthens the complexity of decision version Of MIN DISTANCE k-PAIRED-DOM SET problem in chordal graphs. We show that for a given graph G, unless NP subset of DTIME (n(0)((log) (log) (n)) MIN DISTANCE k-PAIRED-Dom SET problem cannot be approximated within a factor of (1 -epsilon ) In n for any epsilon > 0, where n is the number of vertices in G. We also show that MIN DISTANCE k-PAIRED-DOM SET problem is APX-complete for graphs with degree bounded by 3. On the positive side, we present a linear time algorithm to compute the minimum cardinality of a distance k-paired-dominating set of a strongly chordal graph G if a strong elimination ordering of G is provided. We show that for a given graph G, MIN DISTANCE k-PAIRED-DOM SET problem can be approximated with an approximation factor of 1 + In 2 + k . In(Delta(G)), where Delta(G) denotes the maximum degree of G. (C) 2012 Elsevier B.V All rights reserved.
Resumo:
Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such ``local'' parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.
On the sphere decoding complexity of high-rate multigroup decodable STBCs in asymmetric MIMO systems
Resumo:
A space-time block code (STBC) is said to be multigroup decodable if the information symbols encoded by it can be partitioned into two or more groups such that each group of symbols can be maximum-likelihood (ML) decoded independently of the other symbol groups. In this paper, we show that the upper triangular matrix encountered during the sphere decoding of a linear dispersion STBC can be rank-deficient even when the rate of the code is less than the minimum of the number of transmit and receive antennas. We then show that all known families of high-rate (rate greater than 1) multigroup decodable codes have rank-deficient matrix even when the rate is less than the number of transmit and receive antennas, and this rank-deficiency problem arises only in asymmetric MIMO systems when the number of receive antennas is strictly less than the number of transmit antennas. Unlike the codes with full-rank matrix, the complexity of the sphere decoding-based ML decoder for STBCs with rank-deficient matrix is polynomial in the constellation size, and hence is high. We derive the ML sphere decoding complexity of most of the known high-rate multigroup decodable codes, and show that for each code, the complexity is a decreasing function of the number of receive antennas.