155 resultados para iron hypothesis
Resumo:
Mossbauer effect and X-ray measurements are carried out on product samples of the thermogravimetric analysis (TGA) and isothermal decomposition in hydrogen of homogeneously mixed ferrous nickel oxalates with different iron to nickel ratios. The formation of Fe-Ni alloy is obtained at considerably lower temperatures (z 300 "C) in each case. The Fe-Ni alloys obtained shift from iron-rich to nickel-rich composition as the nickel ratio in the mixed metal oxalates is increased. The formation of Pe-Ni Invar from mixed metal oxalate with Fe:Ni = 1:l is indicated in the early stages but not from those with Fe:Ni = 2: 1 or 64:36. An Produktproben von homogen verteilten Eisen-Nickeloxalaten mit unterschiedlichem Eisen- Nickel-Verhaltnis nach thermogravimetrischer Analyse (TGA) und isothermem Zerfall in Wasserstoff werden Mollbauereffekt- und Rontgenmessnngen durchgefuhrt. In allen Fiillen wird die Bildung der Fe-Ni-Legierung bei betriichtlich niedrigeren Temperaturen (= 300 "C) erhalten. Die erhaltenen Fe-Ni-Legierungen verschieben sich von der eisenreichen zur nickelreichen Zusrtmmensetzung, wenn das Nickelverhaltnis in dem BIetall-Mischoxalat erhoht wird. Die Bildung der Fe-Ni-lnvar-Legierung aus dem Metall-Mischoxalat mit Fe:Ni = 1 : 1 wird in fruhen Zustanden beobachtet, iedoch nicht aus Oxalaten mit Fe:Ni = 2:1 oder 64:36.
Resumo:
For N2 on a clean Fe surface, the adsorbed precursor in a parallel orientation becomes predominant around 110 K, while at lower temperatures it coexists with a weakly adsorbed species. On a Ba-promoted Fe surface, however, N2 is present exclusively in the precursor state in the temperature range 80–150 K following moderate exposure. Besides exhibiting a low N-N stretching frequency of 1530 cm−1, the precursor shows a clear separation between the 5σ and 1π levels in the UPS; the precursor dissociates to give a nitridic species around 160 K.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.
Resumo:
Certain recent models of sex determination in mammals, Drosophila melanogaster, Caenorhabditis elegans, and snakes are examined in the light of the hypothesis that the relevant genetic regulatory mechanisms are similar and interrelated. The proposed key element in each of these instances is a noncoding DNA sequence, which serves as a high-affinity binding site for a repressor-like molecule regulating the activity of a major "sex-determining" gene. On this basis it is argued that, in several eukaryotes, (i) certain DNA sequences that are sex-determining are noncoding, in the sense that they are not the structural genes of a sex-determining protein; (ii) in some species these noncoding sequences are present in one sex and absent in the other, while in others their copy number or accessibility to regulatory molecules is significantly unequal between the two sexes; and (iii) this inequality determines whether the embryo develops into a male or a female.
Resumo:
Ferrous and ferric complexes of 2,4-dithiobiuret (Dtb) of the type Fe(Dtb)m Xn where m, n = 1-3, and X = CI–, Br–, I– and SO 4 2– , and a neutral Fe(Dtb-H)2 complex have been synthesized and characterised by elemental analyses, magnetic susceptibility, i.r., electronic and Mössbauer spectroscopic studies. From its i.r. spectrum Dtb was found to act as a S,S-coordinating bidentate chelate. The magnetic moment, electronic and Massbauer spectra are consistent with a low spin distorted octahedral structure for the ferric complexes and a high spin form for ferrous complexes.
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
The possibility of hydroxyproline residues stabilizing the collagen triple-helical structure by the formation of additional hydrogen bonds through their γ-hydroxyl group has been studied from structural considerations. It is not possible for this hydroxyl group to form a direct hydrogen bond with a suitable group in a neighbouring chain of the triple-helical protofibril. However, in the modified one-bonded structure, which is stabilized by additional hydrogen bonds being formed through water molecules as intermediaries (put forward in 1968 by Ramachandran, G. N. and Chandrasekharan, R.), it is found that the γ-hydroxyl group of hydroxyproline can form a good hydrogen bond with the water oxygen as acceptor, the hydrogen bond length being 2.82 Å. It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond. Experimental studies on the determination of shrinkage and denaturation temperatures of native collagen and its synthetic analogues, as a function of their hydroxyproline content, are being undertaken to test this hypothesis.
Resumo:
Several iron(II, III) complexes of N, N'-di(2-)pyridyl thiourea have been synthesized. The preparation of the complexes from iron(III) salts proceeds through a reduction of iron(III) to iron(II) followed by a subsequent reoxidation. The Moumlssbauer, electronic and infrared spectra of these complexes have been measured. The results are concordant with the coordination of pyridine nitrogens and thiocarbonyl sulfur yielding polymeric complexes. A variable temperature NMR study of the free ligand shows that two conformation are accessible for it in solution at subambient temperatures.
Resumo:
Iron nanoparticles are embedded in multiwall carbon nanotubes by the chemical vapor deposition, where benzene and ferrocene are taken as precursor materials. Varying quantity of iron particles are embedded in these tubes by taking different amount of ferrocene. These particles exhibit a magnetic moment up to 98 emu/g and an enhanced coercivity in the range of 500-2000 Oe. Negative magnetoresistance similar to 10% is observed in the presence of magnetic field up to 11 T applied at various temperatures in the range of 1.3 K-300 K. It is argued that the enhanced coercivity is due to the shape anisotropy. The negative magnetoresistance is believed to be due to the weak localization and spin dependent scattering of electrons by the ferromagnetic particles. In addition we also observe a dependence of the magnetoresistance on the direction of applied field and this is correlated with the shape anisotropy of the Fe particles.
Resumo:
Evidence was obtained for the participation of iron in the double hydroxylation reaction catalyzed by anthranilate hydroxylase from Aspergillus niger (UBC 814). Omission of iron from the growth medium gave inactive preparations of anthranilate hydroxylase which could be reactivated by incubating the enzyme preparations with ferric citrate. The enzyme was susceptible to inhibition by metal chelating agents. The Ki for o-phenanthroline, which inhibited the enzyme activity non-competitively with respect to anthranilate, was calculated to be 0.9 mM. The inhibition by o-phenanthroline was counteracted by ferric complexes such as ferric-ethylenediaminetetraacetic acid and ferric citrate. Anthranilate afforded protection against inhibition by o-phenanthroline.
Resumo:
Two- and three-state models for the adsorption of organic compounds at the electrodelelectrolyte interface are proposed. Different size requirements, if any, for the neutral molecule and the adsorbing solvent are also considered. It is shown how the empirical, generalised surface layer (GSL) relationship (between the potential difference and the electrode charge) formulated by Damaskin et a / . can be understood at the molecular level.
Resumo:
It is virtually impossible to produce castings free from internal stresses using conventional methods of founding. Castings with appreciable stresses distort during storage, transportation, machining and service. Though composition and melt treatment are known to affect the magnitude of residual stress in castings, the data on the effect of carbon equivalent and inoculation on the magnitude of residual stress in castings are limited. In the present investigation, an attempt is made to study (i) the effect of carbon equivalent on residual stress in cast iron castings, and (ii) the effect of inoculants such as calcium silicide and ferrosilicon on residual stress in iron castings in the carbon equivalent range 3.0–4.0%. The results of the investigation indicate the following: (i) the residual strains decrease linearly with increase in carbon equivalent in the uninoculated and inoculated irons; (ii) the tensile residual stresses decrease linearly with increase in carbon equivalent value of the uninoculated, calcium silicide-inoculated and ferrosilicon-inoculated cast iron castings; (iii) the ratio of UTS to residual stress increased on inoculating the grid castings. This increase is higher for calcium silicide-inoculated grids than for ferrosilicon-inoculated grid castings. This implies that from the residual stress point of view, inoculation of the iron with calcium silicide is beneficial.
Resumo:
Mössbauer-effect and X-ray studies were carried out on the product samples of the thermogravimetric analysis (TGA) and of the isothermal decomposition of iron(II) oxalate in flowing H2. Two types of sample configurations were employed for isothermal studies between 280 to 420°C for various periods of heating. Low temperature Mossbauer measurements at liquid nitrogen temperature were carried out to examine the superparamagnetic (SPM) contributions. From the spectra of samples decomposed at 340°C, in vertical experiments, the percentage SPM and percentage ferromagnetic (FM) area of Fe3O4 were estimated and an average size (˜167Å) for Fe3O4 was derived. Mossbauer measurements (at high temperatures) were carried out on Fe3C formed in horizontal experiments, for two samples decomposed at ˜320°C for 1 hr and 2 hr. An estimate of SPM and FM Fe3C was obtained by calculating KV, the anisotropy energy for the Fe3C in these two samples and values of 5.07 × 10−16 and 7.02 × 10−16 erg/sec, respectively, were obtained.