97 resultados para interhospital comparisons
Resumo:
Bluetooth is a short-range radio technology operating in the unlicensed industrial-scientific-medical (ISM) band at 2.45 GHz. A piconet is basically a collection of slaves controlled by a master. A scatternet, on the other hand, is established by linking several piconets together in an ad hoc fashion to yield a global wireless ad hoc network. This paper proposes a scheduling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in bluetooth piconets and scatternets. We propose a novel algorithm for scheduling slots to slaves for both piconets and scatternets using multi-layered parameterized policies. Our scheduling scheme works with real data and obtains an optimal feedback policy within prescribed parameterized classes of these by using an efficient two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm. We show the convergence of our algorithm to an optimal multi-layered policy. We also propose novel polling schemes for intra- and inter-piconet scheduling that are seen to perform well. We present an extensive set of simulation results and performance comparisons with existing scheduling algorithms. Our results indicate that our proposed scheduling algorithm performs better overall on a wide range of experiments over the existing algorithms for both piconets (Das et al. in INFOCOM, pp. 591–600, 2001; Lapeyrie and Turletti in INFOCOM conference proceedings, San Francisco, US, 2003; Shreedhar and Varghese in SIGCOMM, pp. 231–242, 1995) and scatternets (Har-Shai et al. in OPNETWORK, 2002; Saha and Matsumot in AICT/ICIW, 2006; Tan and Guttag in The 27th annual IEEE conference on local computer networks(LCN). Tampa, 2002). Our studies also confirm that our proposed scheme achieves a high throughput and low packet delays with reasonable fairness among all the connections.
Resumo:
Bluetooth is an emerging standard in short range, low cost and low power wireless networks. MAC is a generic polling based protocol, where a central Bluetooth unit (master) determines channel access to all other nodes (slaves) in the network (piconet). An important problem in Bluetooth is the design of efficient scheduling protocols. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Piconet. We present an extensive set of simulation results and performance comparisons with two important existing algorithms. Our results indicate that our proposed scheduling algorithm outperforms the Round Robin scheduling algorithm by more than 40% in all cases tried. Our study also confirms that our proposed policy achieves higher throughput and lower packet delays with reasonable fairness among all the connections.
Resumo:
Non-standard finite difference methods (NSFDM) introduced by Mickens [Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers–Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791–797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250–2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235–276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter (λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
Resumo:
Frequency multiplication (FM) can be used to design low power frequency synthesizers. This is achieved by running the VCO at a much reduced frequency, while employing a power efficient frequency multiplier, and also thereby eliminating the first few dividers. Quadrature signals can be generated by frequency- multiplying low frequency I/Q signals, however this also multiplies the quadrature error of these signals. Another way is generating additional edges from the low-frequency oscillator (LFO) and develop a quadrature FM. This makes the I-Q precision heavily dependent on process mismatches in the ring oscillator. In this paper we examine the use of fewer edges from LFO and a single stage polyphase filter to generate approximate quadrature signals, which is then followed by an injection-locked quadrature VCO to generate high- precision I/Q signals. Simulation comparisons with the existing approach shows that the proposed method offers very good phase accuracy of 0.5deg with only a modest increase in power dissipation for 2.4 GHz IEEE 802.15.4 standard using UMC 0.13 mum RFCMOS technology.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
Seismic passive earth pressure coefficients were computed by the method of limit equilibrium using a pseudostatic approach for seismic forces. Composite curved rupture surfaces were considered in the analysis. While earlier studies using this type of analysis were mainly for sands, seismic passive earth pressure coefficients were obtained in the present study considering the effects of cohesion, surcharge, and own weight. The minimum seismic passive force was obtained by adding the individual minimum values of these components and the validity of the principle of superposition was examined. Other parameters considered in the analysis were wall batter angle, ground surface slope, soil friction angle, wall friction angle, wall adhesion to soil cohesion ratio, and horizontal and vertical seismic accelerations. The seismic earth pressure coefficients were found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and vertical directions. Results of the study are presented in the form of figures and tables. Comparisons of the proposed method with available theories in the seismic case are also presented.
Resumo:
A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.
Resumo:
This review briefly surveys the conformational properties of guest omega-amino acid residues when incorporated into host alpha-peptide sequences. The results presented focus primarily on the use of beta- and gamma-residues in alphaomega sequences. The insertion of additional methylene groups into peptide backbones enhances the range of accessible conformations, introducing additional torsional variables. A nomenclature system, which permits ready comparisons between alpha-peptides and hybrid sequences, is defined. Crystal structure determination of hybrid peptides, which adopt helical and beta-hairpin conformations permits the characterization of backbone conformational parameters for beta- and gamma-residues inserted into regular alpha-polypeptide structures. Substituted beta- and gamma-residues are more limited in the range of accessible conformation than their unsubstituted counterparts. The achiral beta,beta-disubstituted gamma-amino acid, gabapentin, is an example of a stereochemically constrained residue in which the torsion angles about the C-beta-C-gamma (theta(1)) and C-alpha-C-beta (theta(2)) bonds are restricted to the gauche conformation. Hybrid sequences permit the design of novel hydrogen bonded rings in peptide structures.
Resumo:
Amino acid sequences of proteinaceous proteinase inhibitors have been extensively analysed for deriving information regarding the molecular evolution and functional relationship of these proteins. These sequences have been grouped into several well defined families. It was found that the phylogeny constructed with the sequences corresponding to the exposed loop responsible for inhibition has several branches that resemble those obtained from comparisons using the entire sequence. The major branches of the unrooted tree corresponded to the families to which the inhibitors belonged. Further branching is related to the enzyme specificity of the inhibitor. Examination of the active site loop sequences of trypsin inhibitors revealed that there are strong preferences for specific amino acids at different positions of the loop. These preferences are inhibitor class specific. Inhibitors active against more than one enzyme occur within a class and confirm to class specific sequence in their loops. Hence, only a few positions in the loop seem to determine the specificity. The ability to inhibit the same enzyme by inhibitors that belong to different classes appears to be a result of convergent evolution
Resumo:
In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called ``Composite Reconstruction And Unaliasing using Neural Networks'' (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A secreted lectin, Rv1419, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized and the crystals have been characterized. This represents the first X-ray investigation of a lectin or lectin-like molecule from the pathogen. The cubic crystals contain one molecule in the asymmetric unit. Sequence comparisons indicate that the lectin has a beta-trefoil fold and belongs to a well characterized family of carbohydrate-binding modules. Structural analysis of the crystals is in progress.
Resumo:
A common point of reference is needed to describe the three-dimensional arrangements of bases and base-pairs in nucleic acid structures. The different standards used in computer programs created for this purpose give rise to con¯icting interpretations of the same structure.1 For example, parts of a structure that appear ``normal'' according to one computational scheme may be highly unusual according to another and vice versa. It is thus dif®cult to carry out comprehensive comparisons of nucleic acid structures and to pinpoint unique conformational features in individual structures
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.
Resumo:
Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.