65 resultados para integrated shape and topology optimisation (IST)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLiLi1/3Mn2/3]O-2.(1 - x) LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (LiLi1/3Mn2/3]O-2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 degrees C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g(-1) at C/10 rate as compared to 180 mA h g(-1) for LiNi0.5Mn1.5O4 in the potential range of 2.4-4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 degrees C. Also, the integrated cathode material can exhibit 105 mA h g(-1) at 2 C rate as compared to 78 mA h g(-1) for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews integrated economic and ecological models that address impacts and adaptation to climate change in the forest sector. Early economic model studies considered forests as one out of many possible impacts of climate change, while ecological model studies tended to limit the economic impacts to fixed price-assumptions. More recent studies include broader representations of both systems, but there are still few studies which can be regarded fully integrated. Full integration of ecological and economic models is needed to address forest management under climate change appropriately. The conclusion so far is that there are vast uncertainties about how climate change affects forests. This is partly due to the limited knowledge about the global implications of the social and economical adaptation to the effects of climate change on forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of the pressure variation over an aerofoil with integrated Shape Memory Alloy (SMA) wire is reported. A computational model based on finite elements and potential flow computation is proposed to obtain the deflections of the upper and the lower skins of the aerofoil subjected to aerodynamic pressure and hysteretic deformation of the SMA wire. The computational model couples a one-dimensional phenomenological constitutive model of SMA wire with the laminar incompressible aerodynamic pressure induced deformation of the aerofoil skins. The SMA wires are actuated by thermoelectric control system with auxiliary compensator feeding the piezoelectric stack actuators to adjust the hysteretic dynamics of the SMA wire. At each step of this coupled deformation process, the deflected/morphed shape of the aerofoil is d while recalculating to get the pressure distribution. Panel method based on incompressible and inviscid flow is employed for this purpose. The aerodynamic lift is then obtained from the pressure distributions. Numerical results on the variation of coefficient of pressure are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. The mechanisms assembled using the kit accurately capture the aspects of the topology, shape, and size of joint-free compliant mechanisms. Thus, the kit enables designers to conceive and design new, practicable, single-piece compliant mechanisms that do not require assembly. The concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joined at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit for quick and easy validation instead of time-consuming prototyping. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and practice toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it enables even a novice to design compliant mechanisms. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of molecular shape and position of hydrogen bonding functionality in the solid state structural self-assembly was investigated using diaminotriazine substituted diphenyl ether based positional isomers (1-5). The molecular shape was modulated by changing diaminotriazine position that produced channel supramolecular structures in 1, 3 and 5. There exists a direct correlation between the molecular shape and three dimensional structures; more linear molecules resulted in close-packing whereas molecules with a labyrinthine topology formed a channel structure. Supramolecular aspects pertaining to the influence of solvent of crystallization in structure formation and reversible structural transformation in solid state were also explored. 1-5 exhibited tunable solid state fluorescence (lambda(max) = 437-496 nm) depending on the diaminotriazine substitutional position and 3 showed solvent-dependent solid state fluorescence. The present study describes the generation of a supramolecular channel structure with functional properties such as tunable fluorescence by varying the position of hydrogen bond functionality and solvent of crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt doped zinc oxide nanoparticles were prepared through simple wet chemical method. X-ray diffraction studies confirm the prepared particles are in wurtzite structure. Scanning Electron Microscopy studies show the shape and morphology of the particles. To identify the presence of cobalt in ZnO, Energy Dispersive X-ray analysis was done. Optical absorption measurements show the presence of exciton peak at 375 nm. Photoluminescence studies were done with the excitation wavelength of 330 nm, which shows the emission because of exciton recombination and oxygen vacancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and properties of sphere-shaped microscale aggregates of bismuth telluride nanoplates. We obtain porous microspheres by reducing bismuth chloride and orthotelluric acid with hydrazine in the presence of thioglycolic acid-which serves as the shape-and size-directing agent-followed by room-temperature aging-which promotes nanoplate aggregation. Thin film assemblies of the nanoplate microspheres exhibit n-type behavior due to sulfur doping and a Seebeck coefficient higher than that reported for assemblies of chalcogenide nanostructures. Adaptation of our scalable approach to synthesize and hierarchically assemble nanostructures with controlled doping could be attractive for tailoring novel thermoelectric materials for applications in high-efficiency refrigeration and harvesting electricity from heat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) studies and magnetic measurements were carried out on single crystals of multiferroic DyMnO3 in hexagonal as well as orthorhombic structures. The interesting effect of strontium dilution on the frustrated antiferromagnetism of DyMnO3 is also probed using EPR. The line shapes are fitted to broad Lorentzian in the case of pure DyMnO3 and to modified Dysonian in the case of Dy0.5Sr0.5MnO3. The linewidth, integrated intensity, and geff derived from the signals are analyzed as a function of temperature. The results of magnetization measurements corroborate with EPR results. Our study clearly reveals the signature of frustrated magnetism in pure DyMnO3 systems. It is found that antiferromagnetic correlations in these systems persist even above the transition. Moreover, a spin-glass-like behavior in Dy0.5Sr0.5MnO3 is indicated by a steplike feature in the EPR signals at low fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study quench dynamics and defect production in the Kitaev and the extended Kitaev models. For the Kitaev model in one dimension, we show that in the limit of slow quench rate, the defect density n∼1/√τ, where 1/τ is the quench rate. We also compute the defect correlation function by providing an exact calculation of all independent nonzero spin correlation functions of the model. In two dimensions, where the quench dynamics takes the system across a critical line, we elaborate on the results of earlier work [K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett. 100, 077204 (2008)] to discuss the unconventional scaling of the defect density with the quench rate. In this context, we outline a general proof that for a d-dimensional quantum model, where the quench takes the system through a d−m dimensional gapless (critical) surface characterized by correlation length exponent ν and dynamical critical exponent z, the defect density n∼1/τmν/(zν+1). We also discuss the variation of the shape and spatial extent of the defect correlation function with both the rate of quench and the model parameters and compute the entropy generated during such a quenching process. Finally, we study the defect scaling law, entropy generation and defect correlation function of the two-dimensional extended Kitaev model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a dynamic point spread function (PSF) for single and multiphoton fluorescence microscopy. The goal is to generate a PSF whose shape and size can be maneuvered from highly localized to elongated one, thereby allowing shallow-to-depth excitation capability during active imaging. The PSF is obtained by utilizing specially designed spatial filter and dynamically altering the filter parameters. We predict potential applications in nanobioimaging and fluorescence microscopy.