17 resultados para integrable, birational, priodic
Resumo:
In this paper, using the Gauge/gravity duality techniques, we explore the hydrodynamic regime of a very special class of strongly coupled QFTs that come up with an emerging UV length scale in the presence of a negative hyperscaling violating exponent. The dual gravitational counterpart for these QFTs consists of scalar dressed black brane solutions of exactly integrable Einstein-scalar gravity model with Domain Wall (DW) asymptotics. In the first part of our analysis we compute the R-charge diffusion for the boundary theory and find that (unlike the case for the pure AdS (4) black branes) it scales quite non trivially with the temperature. In the second part of our analysis, we compute the eta/s ratio both in the non extremal as well as in the extremal limit of these special class of gauge theories and it turns out to be equal to 1/4 pi in both the cases. These results therefore suggest that the quantum critical systems in the presence of (negative) hyperscaling violation at UV, might fall under a separate universality class as compared to those conventional quantum critical systems with the usual AdS (4) duals.
Resumo:
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.