67 resultados para impurities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of polymorphs and solvatomorphs of the potential anxiolytic drug fenobam exhibit an exclusive preference for one of the two possible tautomeric structures. A novel methodology based on nonlinear optical response has been successfully employed to detect the presence of a polymorphic impurity in a mixture of polymorphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type ate commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a low-frequency electrical noise measurement in graphene based field effect transistors. For single layer graphene (SLG), the resistance fluctuations is governed by the screening of the charge impurities by the mobile charges. However, in case of Bilayer graphene (BLG), the electrical noise is strongly connected to its band structure, and unlike single layer graphene, displays a minimum when the gap between the conduction and valence band is zero. Using double gated BLG devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiconductivity inMTiO3 (M=Ba, Sr) in the temperature range of practical applications is greatly influenced by the electronic charge redistribution among the acceptor states, arising from the frozen cation vacancies as well as the transition metal ion impurities. The conductivity measurements and defect chemistry investigations above 800 K indicate that the predominant lattice defects areM− and oxygen vacancies. There is dominantp-type conduction at higherP O 2 values in acceptor doped materials at high temperatures. However, they are insulating solids around room temperature due to the redistribution of electrons between the neutral, singly-or doubly-ionised acceptor states. Results fromepr and resistivity measurements show that the above charge redistribution is dependent on crystal structure changes. Hence the electron or hole loss by the acceptor states is influenced by the soft modes which also accounts for the differences in electrical properties of BaTiO3 and SrTiO3. The results are also useful in explaining the positive temperature coefficient in resistance and some photo-electrochemcial properties of these solids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Separation of Mussorie rock phosphate (P2O5 = 20%) from Uttar Pradesh, India, containing pyrite, calcite and other carbonaceous impurities by flotation has been successfully attempted to upgrade the phosphate values. Based on Hallimond cell flotation results of single and synthetic mineral mixtures of calcite and apatite using oleic acid and potassium phosphate, conditions were obtained for the separation of calcite from apatite which is considered to be the most difficult step in the beneficiation of calcareous phosphates. Further studies using 250 g of the mineral (−60 +150 and −150 mesh fractions, deslimed) in laboratory size Fagergren subaeration machine employed a stagewise flotation viz. carbonaceous materials using terpineol, pyrite using potassium-ethyl xanthate and calcite using oleic acid respectively. Separation was, however, found to be unsatisfactory in the absence of a depressant. Among starch, hydrofluosilicic acid and dipotassium hydrogen phosphate, which were tried as depressants for apatite in the final flotation stage, dipotassium hydrogen phosphate proved to be superior to others. However, the tests with the above fractions did not yield the required grade. This was possibly due to insufficient liberation of the phosphate mineral from the ore body and different experimental conditions due to scale up operations. Experiments conducted using −200 mesh deslimed fractions has yielded an acceptable grade of 27.6% P2O5 with a recovery of about 60%. The results have been explained in terms of the specific adsorption characteristics of phosphate ions on apatite and the liberation size of the mineral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of a study of the two-impurity Anderson model using a thermodynamic scaling theory developed recently. The model is characterized by the Coulomb energy U, the orbital energy epsilond, the d-level width Gamma, and the separation between impurities R. If Gamma<<−epsilond<impurities have a ''fluctuating valence'' with the singlet lying lower in energy, i.e., epsilond>~Gamma. Here we find that the single-impurity physics dominates the low-temperature behavior, and impurity-impurity interactions are perturbative. The qualitative features of the temperature-dependent susceptibility are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A possible mechanism for the resistance minimum in dilute alloys in which the localized impurity states are non-magnetic is suggested. The fact is considered that what is essential to the Kondo-like behaviour is the interaction of the conduction electron spin s with the internal dynamical degrees of freedom of the impurity centre. The necessary internal dynamical degrees of freedom are provided by the dynamical Jahn-Teller effect associated with the degenerate 3d-orbitals of the transition-metal impurities interacting with the surrounding (octahedral) complex of the nearest-neighbour atoms. The fictitious spin I characterizing certain low-lying vibronic states of the system is shown to couple with the conduction electron spin s via s-d mixing and spin-orbit coupling, giving rise to a singular temperature-dependent exchange-like interaction. The resistivity so calculated is in fair agreement with the experimental results of Cape and Hake for Ti containing 0.2 at% of Fe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The co-doping effect of Zn and Pr impurities in the compound of composition Y1-xPrxBa2[Cu1-yZny](3)O7-delta with x = 0.1, x = 0.2 and 0 <= y <= 0.1 has been investigated by analyzing the results of electrical resistivity measurements. It is found that for Pr substitution at x = 0.1, there is a minimal influence on in-plane processes, thereby slightly affecting T-c and residual resistivity rho(0), but with the resistivity slope d rho/dT becoming large for the range of y from 0.03 to 0.06, leading to a larger depinning effect. For x = 0.2 a drastic change is observed whereby rho(0) becomes abnormally large, and d rho/dT becomes negative, implying totally pinned charge stripes and no depinning. The second observation therefore suggests that Pr substitution converts the overdoped system to an optimally doped system, leading to the universal superconductor-insulator transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blue emission of polyfluorene (PF)-based light-emitting diodes (LEDs) is known to degrade due to a low-energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence (EL) from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low-energy emission mechanism. Our time-dependent many-body studies show a large cross-section for the triplet formation in the EL process in the presence of PM, primarily due to electron-hole recombination processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition of hydrazinium monoperchlorate (HP-1) in the molten state has been investigated using differential thermal analysis, thermogravimetric analysis, a constant volume manometric technique and mass-spectrometry. The stoichiometry of the reaction can be represented by the equation: 20 N2H5C1O4 13 NH4C1O4 + 3.5 Cl2 + 2 O2 + 13 N2 + 0.5 N2O + 0.5 H2 + + 23.5 H2O The data seem to indicate that the mechanism, which involves an associated complex, remains unchanged from 140 to 190°. Consequently, impurities capable of forming associated complexes with the hydrazinium or the perchlorate ion desensitize the thermal decomposition of HP-1, the extent of desensitization being determined by the size, the charge and the concentration of the impurity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the current produced in a Tomonaga-Luttinger liquid by an applied bias and by weak, pointlike impurity potentials which are oscillating in time. We use bosonization to perturbatively calculate the current up to second order in the impurity potentials. In the regime of small bias and low pumping frequency, both the dc and ac components of the current have power-law dependences on the bias and pumping frequencies with an exponent 2K-1 for spinless electrons, where K is the interaction parameter. For K < 1/2, the current grows large for special values of the bias. For noninteracting electrons with K=1, our results agree with those obtained using Floquet scattering theory for Dirac fermions. We also discuss the cases of extended impurities and of spin-1/2 electrons.