105 resultados para imaging spectrometer
Resumo:
[1] We have compared the spectral aerosol optical depth (AOD, tau lambda) and aerosol fine mode fraction (AFMF) of Collection 004 (C004) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) on board National Aeronautics and Space Administration's (NASA) Terra and Aqua platforms with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), India for the period 2001-2005. The spatially-averaged (0.5 degrees x 0.5 degrees centered at AERONET sunphotometer) MODIS Level-2 aerosol parameters (10 km at nadir) were compared with the temporally averaged AERONET-measured AOD (within +/- 30 minutes of MODIS overpass). We found that MODIS systematically overestimated AOD during the pre-monsoon season (March to June, known to be influenced by dust aerosols). The errors in AOD at 0.66 mu m were correlated with the apparent reflectance at 2.1 mu m (rho*(2.1)) which MODIS C004 uses to estimate the surface reflectance in the visible channels (rho(0.47) = rho*(2.1)/ 4, rho(0.66) = rho*(2.1)/ 2). The large errors in AOD (Delta tau(0.66) > 0.3) are found to be associated with the higher values of rho*(2.1) (0.18 to 0.25), where the uncertainty in the ratios of reflectance is large (Delta rho(0.66) +/- 0.04, Delta rho(0.47) +/- 0.02). This could have resulted in lower surface reflectance, higher aerosol path radiance and thus lead to overestimation in AOD. While MODIS-derived AFMF has binary distribution (1 or 0) with too low (AFMF < 0.2) during dust-loading period, and similar to 1 for the rest of the retrievals, AERONET showed range of values (0.4 to 0.9). The errors in tau(0.66) were also high in the scattering angle range 110 degrees - 140 degrees, where the optical effects of nonspherical dust particles are different from that of spherical particles.
Resumo:
A popular dynamic imaging technique, k-t BLAST (ktB) is studied here for BAR imaging. ktB utilizes correlations in k-space and time, to reconstruct the image time series with only a fraction of the data. The algorithm works by unwrapping the aliased Fourier conjugate space of k-t (y-f-space). The unwrapping process utilizes the estimate of the true y-f-space, by acquiring densely sampled low k-space data. The drawbacks of this method include separate training scan, blurred training estimates and aliased phase maps. The proposed changes are incorporation of phase information from the training map and using generalized-series-extrapolated training map. The proposed technique is compared with ktB on real fMRI data. The proposed changes allow for ktB to operate at an acceleration factor of 6. Performance is evaluated by comparing activation maps obtained using reconstructed images. An improvement of up to 10 dB is observed in thePSNR of activation maps. Besides, a 10% reduction in RMSE is obtained over the entire time series of fMRI images. Peak improvement of the proposed method over ktB is 35%, averaged over five data sets. (C)2010 Elsevier Inc. All rights reserved.
Resumo:
A novel approach for measurement of small rotation angles using imaging method is proposed and demonstrated. A plane mirror placed on a precision rotating table is used for imaging the newly designed composite coded pattern. The imaged patterns are captured with the help of a CCD camera. The angular rotation of the plane mirror is determined from a pair of the images of the pattern, captured once before and once after affecting the tilt of the mirror. Both simulation and experimental results suggest that the proposed approach not only retains the advantages of the original imaging method but also contributes significantly to the enhancement of its measuring range (+/- 4.13 degrees with accuracy of the order of 1 arcsec).
Resumo:
The imaging performance of hololenses formed with four different geometries were studied through an analysis of their third-order aberration coefficients. It is found that the geometry proposed by Brandt (1969) gives the least residual aberration with minimum variation of this aberration with the reconstruction angle. When the ideal position of one of the construction beams is changed in order to generate a hololens array, the residual aberration is found to increase sharply, which in turn affects the image resolution among the multiplied images in the output. A hololens array was generated using Brandt's geometry with the help of a one-dimensional sinusoidal grating. The results of multiple imaging with the hololens array are presented. The image resolution is reasonably high and can be further improved by reducing the f-number of the hololenses.
Resumo:
We analyse the imaging property of an oriented photographic diffuser which is the record of an elongated speckle pattern. It is found that the contrast transfer, when gratings are imaged through the slits in the diffuser, is considerably higher compared to imaging through a circular pinhole of comparable dimensions. We use the diffuser to produce high frequency gratings through multiple imaging a low frequency grating. The grating is used to demonstrate optical image subtraction.
Resumo:
A pulsed field gradient spin echo NMR spectrometer has been assembled by interfacing a programmable pulse generator and a data acquisition system designed and fabricated in our laboratory with other imported units. Calibration results of the magnetic field gradients are presented.
Resumo:
We apply the theta modulation technique to simultaneously multiple image more than one object independently with a Fourier plane sampling type of multiple imaging system. Experimental results of multiple imaging two objects is presented.
Resumo:
The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.
Resumo:
We have compared the total as well as fine mode aerosol optical depth (tau and tau(fine)) retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua (2001-2005) with the equivalent parameters derived by Aerosol Robotic Network (AERONET) at Kanpur (26.45 degrees N, 80.35 degrees E), northern India. MODIS Collection 005 (C005)-derived tau(0.55) was found to be in good agreement with the AERONET measurements. The tau(fine) and eta (tau(fine)/tau) were, however, biased low significantly in most matched cases. A new set of retrieval with the use of absorbing aerosol model (SSA similar to 0.87) with increased visible surface reflectance provided improved tau and tau(fine) at Kanpur. The new derivation of eta also compares well qualitatively with an independent set of in situ measurements of accumulation mass fraction over much of the southern India. This suggests that though MODIS land algorithm has limited information to derive size properties of aerosols over land, more accurate parameterization of aerosol and surface properties within the existing C005 algorithm may improve the accuracy of size-resolved aerosol optical properties. The results presented in this paper indicate that there is a need to reconsider the surface parameterization and assumed aerosol properties in MODIS C005 algorithm over the Indian region in order to retrieve more accurate aerosol optical and size properties, which are essential to quantify the impact of human-made aerosols on climate.
Resumo:
An ultraviolet photoelectron spectrometer for the study of van der Waals molecules has been designed and fabricated indigenously. The spectrometer consists of an HeI discharge lamp, a molecular beam sample inlet system, an electrostatic lens, a 180-degrees hemispherical electrostatic analyser and a channeltron detector. Performance of the spectrometer is illustrated with an example.