48 resultados para hunter-gatherer technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal model for a conventional biogas plant has been developed in order to understand the heat transfer from the slurry and the gas holder to the surrounding earth and air respectively. The computations have been performed for two conditions : (i) when the slurry is at an ambient temperature of 20°C, and (ii) when it is at 35°C, the optimum temperature for anaerobic fermentation. Under both these conditions, the gas holder is the major “culprit” with regard to heat losses from the biogas plant. The calculations provide an estimate for the heat which has to be supplied by external means to compensate for the net heat losses which occur if the slurry is to be maintained at 35°C. Even if this external supply of heat is realised through (the calorific value of) biogas, there is a net increase in the biogas output, and therefore a net benefit, by operating the plant at 35°C. At this elevated temperature, the cooling effect of adding the influent at ambient temperature is not insignificant. In conclusion, the results of the thermal analysis are used to define a strategy for operating biogas plants at optimum temperatures, or at higher temperatures than the ambient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the design basis of the conventional Khadi and Village Industries Commission biogas plants has been elucidated. It has been shown that minimisation of the cost of the gas holder alone leads to the narrow and deep digesters of conventional plants. If instead, the total capital cost of the gas holder plus digester is minimised, the optimisation leads to wide and shallow digesters, which are less expensive. To test this alternative, two prototype plants have been designed, constructed and operated. These plants are not only 25–40% cheaper, but their performance is actually slightly better than the conventional plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives an account of a conventional 5.66 m3/day (200 cubic ft/day) biogas plant which has been instrumented, operated and monitored for 2 1/2 years. The observations regarding input to the plant, sludge and biogas outputs, and conditions inside the digester, have been described. Three salient features stand out. First, the observed average daily gas yield is much less than the rated capacity of the plant. Secondly, the plants show ease of operation and a very slow response to reductions and cessations of dung supply. Thirdly, the unexpectedly marked uniformity of density and temperature inside the digester indicates the almost complete absence of the stratification which is widely believed to take place; hence, biogas plants may be treated as isothermal, ‘ uniform ’ density, most probably imperfectly mixed, fed-batch reactors operating at the mean ambient temperature and the density of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technical developments and advances that have taken place thus far are reviewed in those areas impacting future phased array active aperture radar systems. The areas covered are printed circuit antennas and antenna arrays, GaAs MMIC design and fabrication leading to affordable transmitter-receiver (T-R) modules, and novel hardware and software developments. The use of fiber-optic distribution networks to interconnect the monolithically integrated optical components with the T-R modules is discussed. Beamforming and sidelobe control techniques for active phased array systems are also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar pond technology has made substantial progress in the last fifteen years. This paper reviews the basic principles of solar ponds and the problems encountered in their operation and maintenance. The factors which influence the technical and economic viability of solar ponds for thermal applications and power generation have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 mu m diameter to serve as a coil. The overall size of the first pump is 25 mm x 25 mm x 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm x 20 mm x 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm x 35 mm x 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of optoelectronics and photonics as viable alternatives to electronics in many key areas of engineering relevance is indeed significant. This paper presents a tutorial review of integrated optics � a technologically important development in photonics. Materials, processes, device technology and applications are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave pipelining is a design technique for increasing the throughput of a digital circuit or system without introducing pipelining registers between adjacent combinational logic blocks in the circuit/system. However, this requires balancing of the delays along all the paths from the input to the output which comes the way of its implementation. Static CMOS is inherently susceptible to delay variation with input data, and hence, receives a low priority for wave pipelined digital design. On the other hand, ECL and CML, which are amenable to wave pipelining, lack the compactness and low power attributes of CMOS. In this paper we attempt to exploit wave pipelining in CMOS technology. We use a single generic building block in Normal Process Complementary Pass Transistor Logic (NPCPL), modeled after CPL, to achieve equal delay along all the propagation paths in the logic structure. An 8×8 b multiplier is designed using this logic in a 0.8 ?m technology. The carry-save multiplier architecture is modified suitably to support wave pipelining, viz., the logic depth of all the paths are made identical. The 1 mm×0.6 mm multiplier core supports a throughput of 400 MHz and dissipates a total power of 0.6 W. We develop simple enhancements to the NPCPL building blocks that allow the multiplier to sustain throughputs in excess of 600 MHz. The methodology can be extended to introduce wave pipelining in other circuits as well

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of logic synthesis is to produce circuits which satisfy the given boolean function while meeting timing constraints and requiring the minimum silicon area. Logic synthesis involves two steps namely logic decomposition and technology mapping. Existing methods treat the two as separate operation. The traditional approach is to minimize the number of literals without considering the target technology during the decomposition phase. The decomposed expressions are then mapped on to the target technology to optimize the area, Timing optimization is carried out subsequently, A new approach which treats logic decomposition and technology maping as a single operation is presented. The logic decomposition is based on the parameters of the target technology. The area and timing optimization is carried out during logic decomposition phase itself. Results using MCNC circuits are presented to show that this method produces circuits which are 38% faster while requiring 14% increase in area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores issues and challenges in the field of education in nanoscience and technology with special emphasis with respect to India, where an expanding programme of research in nano science and technology is in place. The article does not concentrate on actual curricula that are needed in nano science and technology education course. Rather it focuses on the desirability of nanoscience and technology education at different levels of education and future prospect of students venturing into this within the economic and cultural milieu of India. We argue that care is needed in developing the education programme in India. However, the risk is worth taking as the education on nanoscience and technology can bridge the man power gap not only in this area of technology but also related technologies of hardware and micro electronics for which the country is a promising destination at global level. This will also unlock the demographical advantage that India will enjoy in the next five decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the influence of management on Technical Efficiency Change (TEC) and Technological Progress (TP) in the communication equipment and consumer electronics sub-sectors of Indian hardware electronics industry. Each sub-sector comprises 13 sample firms for two time periods.The primary objective is to determine the relative contribution of TP and TEC to TFP Growth (TFPG) and to establish the influence of firm specific operational management decision variables on these two components. The study finds that both the sub-sectors have strived and achieved steady TP but not TEC in the period of economic liberalisation to cope with the intensifying competition. The management decisions with respect to asset and profit utilization, vertical integration, among others, improved TP and TE in the sub-sectors. However, R&D investments and technology imports proved costly for TFP indicating inadequate efforts and/or poor resource utilisation by the management. Management was found to be complacent in terms of improving or developing their own technology as indicated by their higher dependence on import of raw materials and no influence of R&D on TP.