43 resultados para human-structure interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.Methodology/Principal Finding: We show that the minimal promoter of human resistin lies within similar to 80 bp sequence upstream of the transcriptional start site (-240) whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha), activating transcription factor 2 (ATF-2) and activator protein 1 (AP-1) transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1) binding site (-276 to -295) is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPAR gamma) is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPAR gamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA) upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPAR gamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPAR gamma interaction. Chromatin immunoprecipitation (ChIP) assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPAR gamma, chromatin modifier histone deacetylase 1 (HDAC1) and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistingene transcription.Conclusion: Our findings suggest a complex interplay of Sp1 and PPAR gamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interactions of lipid A and lipopolysaccharide (LPS) with human serum albumin (HSA) were examined using fluorescence methods. Lipid A binds HSA with a stoichiometry of 2:1 with dissociation constants of 1.0 µM and 6.0 µM for the high- and low-affinity interactions, respectively. Lipid A displaces HSA-bound dansylsarcosine competitively, but not HSA-bound warfarin, suggesting that domain III-A, and not domain 11-A, is a lipid A binding site. Domain I does not contribute a site for lipid A. Based on these data, and the structural similarity between subdomains III-A and III-B, it is proposed that these two regions of HSA represent the high- and low-affinity sites of interaction of lipid A. Whole LPS also binds HSA, displacing dansylsarcosine, and its lipid A moiety appears to be the interaction site. However, there are differences between LPS and free lipid A. Polymyxin B forms ternary complexes with LPS bound to HSA, suggesting that the regions on LPS recognized by HSA and polymyxin B are different. The observed affinity of lipid A for HSA and mass action effects due to its abundance in the circulation would imply a major LPS carrier function for HSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The unprecedented absence of direct metal–nucleotide interaction has been observed in the X-ray structure of the ternary metal nucleotide system [Cu(bzim)(H2O)5]2+[IMP]2–·3H2O [IMP = inosine 5-monophosphate(2–), bzim = benzimidazole). The complex crystallizes in the space group P21 with a= 7.013(2), b= 13.179(9), c= 14.565(9)Å, = 94.82(4)°, and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least squares on the basis of 1 761 observed (I? 3i) reflections to final R and R values of 0.034 and 0.036 respectively. The CuII has a distorted octahedral co-ordination with a nitrogen of the bzim ligand [Cu–N 1.947(5)Å] and three oxygens of water molecules in the basal plane [mean Cu–O 2.017(3)Å] and two more water oxygens at axial positions [Cu–O 2.194(6) and 2.732(5)Å]. The nucleotide base stacks with the bzim ligand at an average distance of 3.5 Å and an angle of 22°. In the lattice, N(7) of the base is linked to a lattice water through a hydrogen bond, while all the phosphate oxygens are involved in hydrogen bonds with co-ordinated as well as lattice water molecules. The co-ordination behaviour of IMP to CuII is compared in structures containing different -aromatic amines in order to assess the influence of the ternary ligand in complex formation. The present results indicate that, apart from the commonly observed phosphate binding, other modes of co-ordination are possible, these being influenced mainly by the -accepting properties of the ternary ligand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 X 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal.mol(-1), -21 cal.mol(-1)K(-1) and -6.86 kcal.mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and Forster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three dimensional structure of a protein is formed and maintained by the noncovalent interactions among the amino acid residues of the polypeptide chain These interactions can be represented collectively in the form of a network So far such networks have been investigated by considering the connections based on distances between the amino acid residues Here we present a method of constructing the structure network based on interaction energies among the amino acid residues in the protein We have investigated the properties of such protein energy based networks (PENs) and have shown correlations to protein structural features such as the clusters of residues involved in stability formation of secondary and super secondary structural units Further we demonstrate that the analysis of PENs in terms of parameters such as hubs and shortest paths can provide a variety of biologically important information such as the residues crucial for stabilizing the folded units and the paths of communication between distal residues in the protein Finally the energy regimes for different levels of stabilization in the protein structure have clearly emerged from the PEN analysis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of a framed structure with a foundation beam resting on an elastic medium, representing the soil, has been studied using the photoelastic method. The contact pressure distribution, the fibre stress in the foundation beam and frame structure, as well as the stresses in the elastic medium, have been obtained. These have been compared with theoretical results obtained by idealizing the soil as (a) elastic half plane, and (b) elastic half space. It is shown that the photoelastic method can provide an easy solution to this type of problem if the soil can be idealized as an elastic continuum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plane stress solution for the interaction analysis of a framed structure, with a foundation beam, resting on a layered soil has been studied using both theoretical and photoelastic methods. The theoretical analysis has been done by using a combined analytical and finite element method. In this, the analytical solution has been used for the semi-infinite layered medium and finite element method for the framed structure. The experimental investigation has been carried out using two-dimensional photoelasticity in which modelling of the layered semi-infinite plane and a method to obtain contact pressure distribution have been discussed. The theoretical and experimental results in respect of contact pressure distribution between the foundation beam and layered soil medium, the fibre stresses in the foundation beam and framed structure have been compared. These results have also been compared with theoretical results obtained by idealizing the layered semi-infinite plane as (a) a Winkler model and (b) an equivalent homogeneous semi-infinite medium

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Telomeric DNA of a variety of vertebrates including humans contains the tandem repeat d(TTAGGG)(n). We have investigated the structural properties of the human telomeric repeat oligonucleotide models d(T(2)AG(3))(4), d(G(3)T(2)A)(3)G(3), and d(G(3)T(2)AG(3)) using CD, gel electrophoresis, and chemical probing techniques. The sequences d(G(3)T(2)A)(3)G(3) and d(T(2)AG(3))(4) assume an antiparallel G quartet structure by intramolecular folding, while the sequence d(G(3)T(2)AG(3)) also adopts an antiparallel G quartet structure but by dimerization of hairpins. In all the above cases, adenines are in the loop. The TTA loops are oriented at the same end of the G tetrad stem in the case of hairpin dimer. Further, the oligonucleotide D(G(3)T(2)AG(3)) forms a higher order structure by the association of two hairpin dimers via stacking of G tetrad planes. Here we show that N-7 of adenine in the hairpin dimer is Hoogsteen hydrogen-bonded. The partial reactivity of loop adenines with DEPC in d(T(2)AG(3))(4) suggests that the intramolecular G quartet structure is highly polymorphic and structures with different loop orientations and topologies are formed in solution. Intra- and interloop hydrogen bonding schemes for the TTA loops are proposed to account for the observed diethyl pyrocarbonate reactivities of adenines. Sodium-induced G quartet structures differ from their potassium-induced counterparts not only in stability but also in loop conformation and interactions. Thus, the overall structure and stability of telomeric sequences are modulated by the cation present, loop sequence, and the number of G tracts, which might be important for the telomere function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preparation and characterization of the fullerenes, C60 and C70, are described in detail, including the design of the generators fabricated locally. The characterization techniques employed are UV-visible, IR, Raman and C-13 NMR spectroscopies, scanning as well as transmission electron microscopy and mass spectrometry. The electron energy level diagram of C60 as well as the one-electron reductions of C60 and C70 leading to various anions are discussed. Electronic absorption spectra of C60- and C60(2-) are reported. Phase transitions from the plastic to the crystalline states of C60 and C70 are examined. Based on a C-13 NMR study in a mixture of nematic liquid crystals, it has been demonstrated that C60 retains its extraordinary symmetry in solution phase as well. Interaction of C60 and C70 with strong electron-donor molecules has been investigated employing cyclic voltammetry. Superconductivity of K(x)C60 has been studied by non-resonant microwave absorption; Na(x)C60 as well as K(c)C70 are shown to be non-superconducting. Doping C60 with iodine does not make it superconducting. Interaction of C60 with SbCl5 and liquid Br2 gives rise to halogenated products.