79 resultados para global optimisation
Resumo:
Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.
Resumo:
The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an ldquoappropriaterdquo similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(gamma–1)/2) for gamma le 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of gamma, the solution series diverge at timet — 2(beta–1)/ (v(1+beta)+(1–beta)2) where beta=2/(gamma–1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].
Resumo:
A connectionist approach for global optimization is proposed. The standard function set is tested. Results obtained, in the case of large scale problems, indicate excellent scalability of the proposed approach
Resumo:
Recently, it was found that a reduction in atmospheric CO2 concentration leads to a temporary increase in global precipitation. We use the Hadley Center coupled atmosphere-ocean model, HadCM3L, to demonstrate that this precipitation increase is a consequence of precipitation sensitivity to changes in atmospheric CO2 concentrations through fast tropospheric adjustment processes. Slow ocean cooling explains the longer-term decrease in precipitation. Increased CO2 tends to suppress evaporation/precipitation whereas increased temperatures tend to increase evaporation/precipitation. When the enhanced CO2 forcing is removed, global precipitation increases temporarily, but this increase is not observed when a similar negative radiative forcing is applied as a reduction of solar intensity. Therefore, transient precipitation increase following a reduction in CO2-radiative forcing is a consequence of the specific character of CO2 forcing and is not a general feature associated with decreases in radiative forcing. Citation: Cao, L., G. Bala, and K. Caldeira (2011), Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?, Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.
Resumo:
Ligand-induced conformational changes in proteins are of immense functional relevance. It is a major challenge to elucidate the network of amino acids that are responsible for the percolation of ligand-induced conformational changes to distal regions in the protein from a global perspective. Functionally important subtle conformational changes (at the level of side-chain noncovalent interactions) upon ligand binding or as a result of environmental variations are also elusive in conventional studies such as those using root-mean-square deviations (r.m.s.d.s). In this article, the network representation of protein structures and their analyses provides an efficient tool to capture these variations (both drastic and subtle) in atomistic detail in a global milieu. A generalized graph theoretical metric, using network parameters such as cliques and/or communities, is used to determine similarities or differences between structures in a rigorous manner. The ligand-induced global rewiring in the protein structures is also quantified in terms of network parameters. Thus, a judicious use of graph theory in the context of protein structures can provide meaningful insights into global structural reorganizations upon perturbation and can also be helpful for rigorous structural comparison. Data sets for the present study include high-resolution crystal structures of serine proteases from the S1A family and are probed to quantify the ligand-induced subtle structural variations.
Resumo:
A wide range of condensed matter systems traverse the metal-nonmetal transition. These include doped semiconductors, metal-ammonia solutions, metal clusters, metal alloys, transition metal oxides, and superconducting cuprates. Certain simple criteria, such as those due to Herzfeld and Mott, have been highly successful in explaining the metallicity of materials. In this article, we demonstrate the amazing effectiveness of these criteria and examine them in the light of recent experimental findings. We then discuss the Limitations in our understanding of the phenomenon of the metal-nonmetal transition.
Resumo:
A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement teaming system. The internal state vector of each learning automaton is updated using an algorithm consisting of a gradient following term and a random perturbation term. It is shown that the algorithm weakly converges to a solution of the Langevin equation implying that the algorithm globally maximizes an appropriate function. The algorithm is decentralized, and the units do not have any information exchange during updating. Simulation results on common payoff games and pattern recognition problems show that reasonable rates of convergence can be obtained.
Resumo:
The statistical thermodynamics of adsorption in caged zeolites is developed by treating the zeolite as an ensemble of M identical cages or subsystems. Within each cage adsorption is assumed to occur onto a lattice of n identical sites. Expressions for the average occupancy per cage are obtained by minimizing the Helmholtz free energy in the canonical ensemble subject to the constraints of constant M and constant number of adsorbates N. Adsorbate-adsorbate interactions in the Brag-Williams or mean field approximation are treated in two ways. The local mean field approximation (LMFA) is based on the local cage occupancy and the global mean field approximation (GMFA) is based on the average coverage of the ensemble. The GMFA is shown to be equivalent in formulation to treating the zeolite as a collection of interacting single site subsystems. In contrast, the treatment in the LMFA retains the description of the zeolite as an ensemble of identical cages, whose thermodynamic properties are conveniently derived in the grand canonical ensemble. For a z coordinated lattice within the zeolite cage, with epsilon(aa) as the adsorbate-adsorbate interaction parameter, the comparisons for different values of epsilon(aa)(*)=epsilon(aa)z/2kT, and number of sites per cage, n, illustrate that for -1
Resumo:
The optimisation is reported on the design of unbalanced magnetron (UBM) sputtering cathodes. For the study, a planar circular cathode backed by a double-coil electromagnet (compatible for a 100 mm diameter target) was developed. The variation of the structure and strength of the magnetic field in front of the target was investigated for different current combinations in the electromagnetic coils, and its effect on the sputtering process was analysed. The observations on the magnetic field geometry revealed some interesting features, such as the balancing point of the fields along the axis (null-point), and the zero axial region over the target surface (B-z = 0 ring). The positions of both could be controlled by adjusting the ratio of the electric current in the coils. The magnetic field null-point could be used as a reference for the region of homogeneous film growth. The B-z = 0 ring was the location where the glow discharge concentrated (or where the maximum target erosion occurred). The diameter of the ring determined the area covered by the discharge and thus the sputtering efficiency. The optimum substrate position can be fixed according to the position of the null-point and optimisation of sputtering can be achieved by adjusting the diameter of the B-z = 0 ring. The results of this study should be helpful in the designing of an ideal UBM using permanent magnets as well as electromagnets. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Composite coatings containing quasicrystalline (QC) phases in Al-Cu-Fe alloys were prepared by laser cladding using a mixture of the elemental powders. Two substrates, namely pure aluminum and an Al-Si alloy were used. The clad layers were remelted at different scanning velocities to alter the growth conditions of different phases. The process parameters were optimized to produce quasicrystalline phases. The evolution of the microstructure in the coating layer was characterized by detailed microstructural investigation. The results indicate presence of quasicrystals in the aluminum substrate. However, only approximant phase could be observed in the substrate of Al-Si alloys. It is shown that there is a significant transport of Si atoms from the substrate to the clad layer during the cladding and remelting process. The hardness profiles of coatings on aluminum substrate indicate a very high hardness. The coating on Al-Si alloy, on the other hand, is ductile and soft. The fracture toughness of the hard coating on aluminum was obtained by nano-indentation technique. The K1C value was found to be 1.33 MPa m1/2 which is typical of brittle materials.
Resumo:
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO(2) changes for the same change in global mean surface temperature. Thus, solar radiation management ``geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO(2), the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.
Resumo:
First systematic spin probe ESR study of water freezing has been conducted using TEMPOL and TEMPO as the probes. The spin probe signature of the water freezing has been described in terms of the collapse of narrow triplet spectrum into a single broad line. This spin probe signature of freezing has been observed at an anomalously low temperature when a milimoler solution of TEMPOL is slowly cooled from room temperature. A systematic observation has revealed a spin probe concentration dependence of these freezing and respective melting points. These results can be explained in terms of localization of spin probe and liquid water,most probably in the interstices of ice grains, in an ice matrix. The lowering of spin probe freezing point, along with the secondary evidences, like spin probe concentration dependence of peak-to-peak width in frozen limit signal, indicates a possible size dependence of these localizations/entrapments with spin probe concentration. A weak concentration dependence of spin probe assisted freezing and melting points, which has been observed for TEMPO in comparison to TEMPOL, indicates different natures of interactions with water of these two probes. This view is also supported by the relaxation behavior of the two probes.