144 resultados para gel electrolytes
Resumo:
Single crystals of K, Rb and Cs perchlorates have been grown by the counter diffusion of the respective ions and CIO4 through the gel medium. Studies on nucleation, growth kinetics, morphological aspects and purity are discussed in this paper. The dielectric constant, ~b, as well as loss measured along the longest axis, exhibits an anomaly at the transition temperature, Tt, in all the three crystals. It is found that the peak values of Tt are approximately 800, 100 and 53 in K, Rb and Cs perchlorates, respectively. The dielectric anomaly and the large value of c b in the cubic phase are discussed in terms of the degree of disorder of the CIO~ group and the possible contribution from defects.
Resumo:
S-Labeled nucleosides of E. coli tRNA and some of the derivatives of thionucleosides were separated on Bio-Gel P-2 and Sephadex G-10 columns employing buffers of low salt concentration and high pH.
Resumo:
Room-temperature zinc ion-conducting molten electrolytes based on acetamide, urea, and zinc perchlorate or zinc triflate have been prepared and characterized by various physicochemical, spectroscopic, and electrochemical techniques. The ternary molten electrolytes are easy to prepare and can be handled under ambient conditions. They show excellent stability, high ionic conductivity, relatively low viscosity, and other favorable physicochemical and electrochemical properties that make them good electrolytes for rechargeable zinc batteries. Specific conductivities of 3.4 and 0.5 mS cm(-1) at 25 degrees C are obtained for zinc-perchlorate-and zinc-triflate-containing melts, respectively. Vibrational spectroscopic data reveal that the free ion concentration is high in the optimized composition. Rechargeable Zn batteries have been assembled using the molten electrolytes, with gamma-MnO2 as the positive electrode and Zn as the negative electrode. They show excellent electrochemical characteristics with high discharge capacities. This study opens up the possibility of using acetamide-based molten electrolytes as alternate electrolytes in rechargeable zinc batteries. (C) 2009 The Electrochemical Society.
Resumo:
Nanoporous anatase with a thin interconnected filmlike morphology has been synthesized in a single step by coupling a nonhydrolytic condensation reaction of a Ti precursor with a hybrid sol-gel combustion reaction. The method combines the advantages of a conventional sol-gel method for the formation of porous structures with the high crystallinity of the products obtained by combustion methods to yield highly crystalline, phase-pure nanoporous anatase. The generation of pores is initiated by the formation of reverse micelles in a polymeric polycondensation product, which expand during heating, leading to larger pores. A reaction scheme involving a complex formation and nonhydrolytic polycondensation reaction with ester elimination leads to the formation of ail extended Ti-O-Ti network. The effect of process parameters, such as temperature and relative ratio of cosurfactants, on phase formation has been studied. The possibility of band gap engineering by controlled doping during synthesis and the possibility of attachment of molecular/nanoparticle sensitizers provide opportunities for easy preparation of photoanodes for solar cell applications.
Resumo:
Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.
Resumo:
In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.
Resumo:
In this research fabrication of crystalline PbZrO3 (PZ) nanoparticles and their phase transformation behavior is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PZ, which was dried at 150 degrees C and then calcined at 300-700 degrees C for 1 h. The morphology, crystallinity and phase formation of as synthesized nanoparticles were studied by the selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermal gravimetric analysis/differential scanning calorimetry (TGA-DSC), and high resolution transmission electron microscope (HRTEM). The XRD, SAED, and TGA-DSC analyses confirmed the tetragonal lead rich zirconia phase (t-Z phase) and monoclinic zirconia phase (m-Z phase) as the intermediate phases during the calcinations process followed by crystallization of single orthorhombic PZ phase at about 700 degrees C. The average PZ particle size was observed about 20 nm as confirmed by TEM study. Energy-dispersive X-ray spectroscopy (EDX) analysis demonstrated that stoichiometric PbZrO3 was formed.
Resumo:
Room temperature, magnesium ion conducting binary molten electrolyte consisting of acetamide and magnesium perchlorate has been prepared and characterized. The molten liquid is very stable and shows high ionic conductivity, of the order of several mS cm(-1) at 25 degrees C with other favourable physicochemical properties. Vibrational spectroscopic studies reveal that the free ion concentration is higher than that of ion pairs and aggregates in the melt. The electrochemical reversibility of magnesium deposition and dissolution is demonstrated using voltammetry and impedance studies. Preliminary studies on rechargeable batteries assembled using gamma-MnO2 and Mg metal as the electrodes together with the molten electrolyte show high discharge capacity.
Resumo:
Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries.
Resumo:
Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.
Resumo:
The possibility of using spin-probe electron spin resonance (ESR) as a tool to study glass transition temperature, T g, of polymer electrolytes is explored in 4 hydroxy 2,2,6,6 tetramethylpiperidine N oxyl (TEMPOL) doped composite polymer electrolyte (PEG)46LiClO4 dispersed with nanoparticles of hydrotalcite. The T g is estimated from the measured values of T 50G, the temperature at which the extrema separation 2A zz of the broad powder spectrum decreases to 50 G. In another method, the correlation time τc for the spin probe dynamics was determined by computer simulation of the ESR spectra and T g has been identified as the temperature at which τc begins to show temperature dependence. While both methods give values of T g close to those obtained from differential scanning calorimetry, it is concluded that more work is required to establish spin-probe ESR as a reliable technique for the determination of T g.
Resumo:
The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.
Resumo:
Sol-gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400-500 degrees C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C-V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (P-s) and coercive field were 0.15 mu C/cm(2) and 20 kV/cm, respectively, confirming the presence of ferroelectricity.
Resumo:
Grafted polymers oil the surface of lipid membranes have potential applications in liposome-based drug delivery and Supported membrane systems. The effect of polymer grafting on the phase behavior of bilayers made up of single-tail lipids is investigated using dissipative particle dynamics. The bilayer is maintained in a tensionless state using a barostat. Simulations are carried Out by varying the grafting fraction, G(f), defined as the ratio of the number of polymer molecules to the number of lipid molecules, and the length of the lipid tails. At low G(f), the bilayer shows I sharp transition from the gel (L-beta) to the liquid-crystalline (L-alpha) phase. This main melting transition temperature is lowered as G(f) is increased, and above a critical value of G(f), the interdigitated L-beta I phase is observed prior to the main transition. The temperature range over which the intermediate phases are observed is a function of the lipid tail length and G(f). At higher grafting fractions, the presence of the L-beta I, phase is attributed to the increase in the area per head group due to the lateral pressure exerted by the polymer brush. The areal expansion and decrease in the melting temperatures as a function of G(f) were found to follow the scalings predicted by the self-consistent mean field theories for grafted polymer membranes. Our study shows that the grafted polymer density can be used to effectively control the temperature range and occurrence of a given bilayer phase.
Resumo:
Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.