463 resultados para frequency dependence


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently there is an increasing demand and extensive research on high density memories, in particular to the ferroelectric random access memory composed of 1T/1C (1 transistor/1 capacitor) or 2T/2C. FRAM's exhibit fast random acess in read/write mode, non - volatility and low power for good performance. An integration of the ferroelectric on Si is the key importance and in this regard, there had been various models proposed like MFS, MFIS, MFMIS structure etc., Choosing the proper insulator is very essential for the better performance of the device and to exhibit excellent electrical characteristics. ZrTiO4 is a potential candidate because of its excellent thermal stability and lattice match on the Si substrate. SrBi2Ta2O9 and ZrTiO4 thin films were prepared on p - type Si substrate by pulsed excimer laser ablation technique. Optimization of both ZT and SBT thin films in MFS and MFIS structure had been done based on the annealing, oxygen partial pressures and substrate temperatures to have proper texture of the thin films. The dc leakage current, P - E hysteresis, capacitance - voltage and conductance - voltage measurement were carried out. The effect of the frequency dependence on MFIS structure was observed in the C – V curve. It displays a transition of C - V curve from high frequency to low frequency curve on subjection to varied frequencies. Density of interface states has been calculated using Terman and high - low frequency C - V curve. The effect of memory window in the C - V hysteresis were analysed in terms of film thickness and annealing temperatures. DC conduction mechanism were analysed in terms of poole - frenkel, Schottky and space charge limited conduction separately on MFS, MIS structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DC electric field induced dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were studied as a function of frequency at different temperatures. It was observed that the dielectric constant (ε) and dissipation factor (tanδ) were decreased in presence of bias field. The temperature of dielectric maxima was found to increase with increasing bias level. The low temperature (frequency dispersion of dielectric permittivity was suppressed with the application of dc bias. After a certain bias voltage the relaxor property of films was disappeared i.e. the films exhibited normal ferroelectric behavior. Since the absence of long range interaction among the nanopolar clusters in PMN and its family is believed to be the origin of relaxor behavior, disappearance of relaxor nature in PMN-PT (70/30) films could be attributed to manifestation of long-range order at higher bias voltage. This was observed in the temperature dependence of dielectric constant i.e. the films neither exhibited any frequency dispersion in the temperature of dielectric maximum (Tm) nor showed any diffused phase transition. The relaxor property of PMN-PT thin films was studied in terms of diffused phase transition together with frequency dispersion of the temperature of dielectric maximum (Tm). Vogel-Fulcher relation was used to analyze the frequency dependence of temperature of dielectric maximum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we report a systematic study of low-frequency 1/fα resistance fluctuation in a metal film at different stages of electromigration. The resistance fluctuation (noise) measurement was carried out in presence of a dc electromigration stressing current. We observe that in addition to the increase in the spectral power SV(f), the frequency dependence of the spectral power changes as the electromigration process progresses and the exponent α starts to change from 1 to higher value closer to 1.5. We interpret this change in α as arising due to an additional contribution to the spectral power with a 1/f3/2 component, which starts to contribute as the electromigration process progresses. This additional component SV(f) ∼ 1/f3/2 has been suggested to originate from long range diffusion that would accompany any electromigration process. The experimental observation finds support in a model simulation, where we also find that the enhancement of noise during electromigration stressing is accompanied by a change in spectral power frequency dependence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SrRuO3 is a well-known itinerant ferromagnet with many intriguing characteristics. The Ru deficiency in this system is believed to play a pivotal role in influencing many of its magnetic and transport properties. The present study involves the magnetic and transport properties of the Ru-deficient SrRu0.93O3 sample to gain more insight into the unusual low-temperature behavior. The ac susceptibility study reveals a sharp ferromagnetic transition at 150 K followed by a hump at T-h similar to 50 K, which has anomalous frequency dependence. Besides, the T-h shifts to lower temperatures with an increase in the superposed dc-biasing field and adheres to H-2 dependence, in accordance with the Gabay and Toulouse line for the Heisenberg spin glass systems. We also observe a pronounced memory effect toward the low-temperature side, signifying the characteristic of glassy behavior. The temperature-dependent magnetoresistance indicates the signature of an additional ordering toward the low-temperature side. All of the interesting findings combined unveil the existence of low-temperature cryptic magnetic phase in SrRu0.93O3. (C) 2012 American Institute of Physics. doi:10.1063/1.3673427]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal transitions in the copolymer of 1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) was investigated to understand its use in microstereolithography. The glass transition temperature and the effect of interaction on this transition process was investigated by means of temperature modulated differential scanning calorimetry (TMDSC). The heat capacities were determined and PHDDA rich phases showed lower heat capacity than PMMA rich phases. The frequency dependence of glass transitions were studied by varying the modulation period of TMDSC and confirmed by dielectric relaxation spectroscopy. Vogel Fulcher Tammann Hesse (VFTH) parameters of homo and copolymers have also been reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comprehensive magnetic study has been carried out on the two sets of La0.5Sr0.5CoO3 samples with a view to understand the origin of low temperature glassiness in the ferromagnetic state. The samples prepared by the conventional solid-state synthesis method show a low temperature shoulder in both dc magnetization as well as in the ac susceptibility measurements, which exhibit characteristics of glassiness such as the frequency dependence and memory effect. These observations suggest the existence of a distinct low temperature cluster-glass like phase within dominant ferromagnetic phase. But, once the same sample is properly homogenized by repeated grinding and annealing process, the low temperature glassy phase disappears, and it shows a pure ferromagnetic behavior. Our comparative study clearly reveals that the reentrant spin-glass like nature is not intrinsic to La0.5Sr0.5CoO3 system, in fact this is an outcome of the compositional inhomogeneity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, impedance and Raman spectroscopy are adopted to probe the nature and extent of disorder to correlate with transport properties in doped polypyrrole (PPy) thin-film devices, synthesized electrochemically at different temperatures. A comparative study of the impedance spectroscopy is performed on PPy devices by both experimental and simulation approach with varying extent of disorder. The impedance measurements of PPy devices are well described by introducing a constant phase element (CPE) (Q) in modified RQ circuit, which accounts for frequency dependence of dielectric response. However, for the PPy grown at lower temperature, an equivalent circuit consisting of two such RQ elements in series is used for successful modelling of the impedance results, which accounts for the depletion region near the electrode. Raman spectroscopy and the de-convoluted spectra are successfully studied to probe the variation in C=C bond stretching and distribution of conjugation length, which relates to disorder in PPy films and the interpretation is well correlated to the impedance results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Employing nitronyl nitroxide lanthanide(III) complexes as metallo-ligands allowed the efficient and highly selective preparation of three series of unprecedented heterotri-spin (Cu Ln-radical) one-dimensional compounds. These 2p-3d-4f spin systems, namely Ln(3)Cu(hfac)II(NitPhOAII)41 (Ln(III)=Gd 1(Gd), Tb 1(Tb), Dy 1(Dy); NitPhOAII=2-(4'-allyloxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide), Ln(3)Cu(hfac)II(NitPhOPO4] (1-nrn=Gd 2Gd, Tb 2Tb, Dy 2(Dy), Ho 2HOf Yb 2yb; NitPhOPr= 2-(4'-propoxyphenyI)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and Ln3Cu(hfac)II(NitPhOB441 (LnIm=Gd 3Gd, Tb 3Tb, Dy 3(Dy); NitPhOBz=2-(4'-benzyloxy- phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) involve O-bound nitronyl nitroxide radicals as bridging ligands in chain structures with a Cu-Nit-Ln-Nit-Ln-Nit-Ln-Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal radical interactions take place in these heterotri-spin chain complexes, these and the next-neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single-chain magnet behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the electrical transport properties of silver-, potassium-, and magnesium-doped hydroxyapatites (HAs). While Ag+ or K+ doping to HA enhances the conductivity, Mg+2 doping lowers the conductivity when compared with undoped HA. The mechanism behind the observed differences in ionic conductivity has been discussed using the analysis of high-temperature frequency-dependent conductivity data, Cole-Cole plots of impedance data as well as on the basis of the frequency dependence of the imaginary part (M) of the complex electric modulus. The f(max) of modulus M decreased in silver- and potassium-doped samples in comparison with the undoped HA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical behavior of three-dimensional cellular assembly of graphene foam (GF) presented temperature dependent characteristics evaluated at both low temperature and room temperature conditions. Cellular structure of GF comprised of polydimethyl siloxane polymer as a flexible supporting material demonstrated 94% enhancement in the storage modulus as compared to polymer foam alone. Evaluation of frequency dependence revealed an increase in both storage modulus and tan delta with the increase in frequency. Moreover, strain rate independent highly reversible behavior is measured up to several compression cycles at larger strains. It is elucidated that the interaction between graphene and polymer plays a crucial role in thermo-mechanical stability of the cellular structure. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlorine-35 NQR frequency and spin-lattice relaxation time measurements as a function of temperature in the range 77-300 K were carried out on 2-amino-3,5-dichloropyridine. Two NQR signals were observed and were assigned to the two chlorines present in the molecule using the additive model for substituent effects. The temperature dependence of the NQR frequency was analysed in terms of the torsional oscillations of the molecule and the torsional frequencies and their temperature dependence were calculated numerically using a two-mode approximation. The temperature dependence of the NQR spin-lattice relaxation time was found to be mainly due to the torsional oscillations of the molecule, with anharmonicity effects showing up at higher temperatures. Copyright (C) 1999 John Wiley & Sons, Ltd.