223 resultados para fracture mechanics


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasibrittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete's microstructure that is influenced by water cement ratio, grade of cement and type of aggregate 11-41. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete 11-41. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the `micro' and the `macro' and have not yet been described satisfactorily in a systematic manner [1-11,15-17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solder joints in electronic packages undergo thermo-mechanical cycling, resulting in nucleation of micro-cracks, especially at the solder/bond-pad interface, which may lead to fracture of the joints. The fracture toughness of a solder joint depends on material properties, process conditions and service history, as well as strain rate and mode-mixity. This paper reports on a methodology for determining the mixed-mode fracture toughness of solder joints with an interfacial starter-crack, using a modified compact mixed mode (CMM) specimen containing an adhesive joint. Expressions for stress intensity factor (K) and strain energy release rate (G) are developed, using a combination of experiments and finite element (FE) analysis. In this methodology, crack length dependent geometry factors to convert for the modified CMM sample are first obtained via the crack-tip opening displacement (CTOD)-based linear extrapolation method to calculate the under far-field mode I and II conditions (f(1a) and f(2a)), (ii) generation of a master-plot to determine a(c), and (iii) computation of K and G to analyze the fracture behavior of joints. The developed methodology was verified using J-integral calculations, and was also used to calculate experimental fracture toughness values of a few lead-free solder-Cu joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracks. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracics. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The field of micro-/nano-mechanics of materials has been driven, on the one hand by the development of ever smaller structures in devices, and, on the other, by the need to map property variations in large systems that are microstructurally graded. Observations of `smaller is stronger' have also brought in questions of accompanying fracture property changes in the materials. In the wake of scattered articles on micro-scale fracture testing of various material classes, this review attempts to provide a holistic picture of the current state of the art. In the process, various reliable micro-scale geometries are shown, challenges with respect to instrumentation to probe ever smaller length scales are discussed and examples from recent literature are put together to exhibit the expanse of unusual fracture response of materials, from ductility in Si to brittleness in Pt. Outstanding issues related to fracture mechanics of small structures are critically examined for plausible solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plates with V-through edge notches subjected to pure bending and specimens with rectangular edge-through-notches subjected to combined bending and axial pull were investigated (under live-load and stress-frozen conditions) in a completely nondestructive manner using scattered-light photoelasticity. Stress-intensity factors (SIFs) were evaluated by analysing the singular stress distributions near crack-tips. Improved methods are suggested for the evaluation of SIFs. The thickness-wise variation of SIFs is also obtained in the investigation. The results obtained are compared with the available theoretical solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of photoelastic investigations on single edge-notch tension specimens of varying notch angle and crack length are reported. The experimental results of Mode I stress intensity factors are compared with analytical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

n this paper, the influence of patch parameters on stress intensity factors in edge cracked plates is studied by employing transmission photoelasticity. Edge cracked plates made of photo-elastic material are patched on one side only by E glass-epoxy and carbon-epoxy unidirectional composites. The patch is located on the crack in such a way that the crack tip is not covered. Magnified isochromatic fringes are obtained by using a projection microscope of magnification 50, converted into a polariscope. Irwin's method is used to compute stress intensity factors from photoelastic data. The reduction in stress intensity factors is presented in graphical form as a function of patch parameters, namely stiffness, location and length. An empirical equation connecting reduction in stress intensity factor and these patch parameters is presented.