110 resultados para fractional tap-length
Resumo:
Some improvements are suggested to Schroeder's scheme [J. Acoust. Soc. Am. 57, 149–150 (1975)] of achieving diffuse sound reflection in concert halls.Subject Classification
Resumo:
An analytical study for the static strength of adhesive lap joints is presented. The earlier solutions of Volkersen [i], DeBruyne[2] and others were limited to linear adhesives. The influence of adhesive non-linearity was first considered by Grimes' et al[3] and Dickson et al [4]. Recently Hart-Smith[5] successfully introduced elastic-plastic behaviour of the adhesive. In the present study the problem is formulated for general non-linear adhesive behaviour and an efficient numerical algorithm is written for the solution. Bilinear and trilinear models for the nonlinearity yield closed form analytical solutions.
Resumo:
This paper presents a generalized approach to design an electromagnetically coupled microstrip ring antenna for dual-band operation. By widening two opposite sides of a square ring antenna, its fractional bandwidth at the primary resonance mode can be increased significantly so that it may be used for practical applications. By attaching a stub to the inner edge of the side opposite to the feed arm, some of the losses in electrical length caused by widening can be regained. More importantly, this addition also alters the current distribution on the antenna and directs radiations at the second resonant frequency towards boresight. It has also been observed that for the dual frequency configurations studied, the ratio of the resonant frequencies (center dot r(2)center dot center dot r(1)) can range between 1.55 and 2.01. This shows flexibility in designing dual frequency antennas with a desired pair of resonant frequencies.
Resumo:
Dynamic systems involving convolution integrals with decaying kernels, of which fractionally damped systems form a special case, are non-local in time and hence infinite dimensional. Straightforward numerical solution of such systems up to time t needs O(t(2)) computations owing to the repeated evaluation of integrals over intervals that grow like t. Finite-dimensional and local approximations are thus desirable. We present here an approximation method which first rewrites the evolution equation as a coupled in finite-dimensional system with no convolution, and then uses Galerkin approximation with finite elements to obtain linear, finite-dimensional, constant coefficient approximations for the convolution. This paper is a broad generalization, based on a new insight, of our prior work with fractional order derivatives (Singh & Chatterjee 2006 Nonlinear Dyn. 45, 183-206). In particular, the decaying kernels we can address are now generalized to the Laplace transforms of known functions; of these, the power law kernel of fractional order differentiation is a special case. The approximation can be refined easily. The local nature of the approximation allows numerical solution up to time t with O(t) computations. Examples with several different kernels show excellent performance. A key feature of our approach is that the dynamic system in which the convolution integral appears is itself approximated using another system, as distinct from numerically approximating just the solution for the given initial values; this allows non-standard uses of the approximation, e. g. in stability analyses.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order derivatives require. However, sufficiently great rnicrostructural disorder can lead, statistically, to macroscopic behavior well approximated by fractional order derivatives. The idea has appeared in the physics literature, but may interest an engineering audience. This idea in turn leads to an infinite-dimensional system without memory; a routine Galerkin projection on that infinite-dimensional system leads to a finite dimensional system of ordinary differential equations (ODEs) (integer order) that matches the fractional-order behavior over user-specifiable, but finite, frequency ranges. For extreme frequencies (small or large), the approximation is poor. This is unavoidable, and users interested in such extremes or in the fundamental aspects of true fractional derivatives must take note of it. However, mismatch in extreme frequencies outside the range of interest for a particular model of a real material may have little engineering impact.
Resumo:
Close relationships between guessing functions and length functions are established. Good length functions lead to good guessing functions. In particular, guessing in the increasing order of Lempel-Ziv lengths has certain universality properties for finite-state sources. As an application, these results show that hiding the parameters of the key-stream generating source in a private key crypto-system may not enhance the privacy of the system, the privacy level being measured by the difficulty in brute-force guessing of the key stream.
Resumo:
The rheological properties of polymer melts and other complex macromolecular fluids are often successfully modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a molecular basis for such fractional equations in terms of the generalized Langevin equation (GLE) that underlies the renormalized Rouse model developed by Schweizer [J. Chem. Phys. 91, 5802 (1989)]. The GLE describes the dynamics of the segments of a tagged chain under the action of random forces originating in the fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain segments, we obtain an analytical expression for the dynamic shear relaxation modulus G(t), which we then show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.
Resumo:
The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.
Resumo:
Flexible constraint length channel decoders are required for software defined radios. This paper presents a novel scalable scheme for realizing flexible constraint length Viterbi decoders on a de Bruijn interconnection network. Architectures for flexible decoders using the flattened butterfly and shuffle-exchange networks are also described. It is shown that these networks provide favourable substrates for realizing flexible convolutional decoders. Synthesis results for the three networks are provided and a comparison is performed. An architecture based on a 2D-mesh, which is a topology having a nominally lesser silicon area requirement, is also considered as a fourth point for comparison. It is found that of all the networks considered, the de Bruijn network offers the best tradeoff in terms of area versus throughput.
Resumo:
The Orthogonal Frequency Division Multiplexing (OFDM) is a form of Multi-Carrier Modulation where the data stream is transmitted over a number of carriers which are orthogonal to each other i.e. the carrier spacing is selected such that each carrier is located at the zeroes of all other carriers in the spectral domain. This paper proposes a new novel sampling offset estimation algorithm for an OFDM system in order to receive the OFDM data symbols error-free over the noisy channel at the receiver and to achieve fine timing synchronization between the transmitter and the receiver. The performance of this algorithm has been studied in AWGN, ADSL and SUI channels successfully.
Resumo:
The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.