23 resultados para foundations of mathematics
Resumo:
Large software systems are developed by composing multiple programs. If the programs manip-ulate and exchange complex data, such as network packets or files, it is essential to establish that they follow compatible data formats. Most of the complexity of data formats is associated with the headers. In this paper, we address compatibility of programs operating over headers of network packets, files, images, etc. As format specifications are rarely available, we infer the format associated with headers by a program as a set of guarded layouts. In terms of these formats, we define and check compatibility of (a) producer-consumer programs and (b) different versions of producer (or consumer) programs. A compatible producer-consumer pair is free of type mismatches and logical incompatibilities such as the consumer rejecting valid outputs gen-erated by the producer. A backward compatible producer (resp. consumer) is guaranteed to be compatible with consumers (resp. producers) that were compatible with its older version. With our prototype tool, we identified 5 known bugs and 1 potential bug in (a) sender-receiver modules of Linux network drivers of 3 vendors and (b) different versions of a TIFF image library.
Resumo:
In the study of holomorphic maps, the term ``rigidity'' refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f :Y -> X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X-1 x X-2 and Y = Y-1 x Y-2 of compact connected complex manifolds. When X-1 is a Riemann surface of genus >= 2, we show that any non-constant holomorphic map F:Y -> X is of a special form.
Resumo:
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
We set up the theory of newforms of half-integral weight on Gamma(0)(8N) and Gamma(0)(16N), where N is odd and squarefree. Further, we extend the definition of the Kohnen plus space in general for trivial character and also study the theory of newforms in the plus spaces on Gamma(0)(8N), Gamma(0)(16N), where N is odd and squarefree. Finally, we show that the Atkin-Lehner W-operator W-4 acts as the identity operator on S-2k(new)(4N), where N is odd and squarefree. This proves that S-2k(-)(4) = S-2k(4).
Resumo:
Mathematics is beautiful and precise and often necessary to understand complex biological phenomena. And yet biologists cannot always hope to fully understand the mathematical foundations of the theory they are using or testing. How then should biologists behave when mathematicians themselves are in dispute? Using the on-going controversy over Hamilton's rule as an example, I argue that biologists should be free to treat mathematical theory with a healthy dose of agnosticism. In doing so biologists should equip themselves with a disclaimer that publicly admits that they cannot entirely attest to the veracity of the mathematics underlying the theory they are using or testing. The disclaimer will only help if it is accompanied by three responsibilities - stay bipartisan in a dispute among mathematicians, stay vigilant and help expose dissent among mathematicians, and make the biology larger than the mathematics. I must emphasize that my goal here is not to take sides in the on-going dispute over the mathematical validity of Hamilton's rule, indeed my goal is to argue that we should refrain from taking sides.
Resumo:
I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.
Resumo:
We extend Alvarez-Consul and King description of moduli of sheaves over projective schemes to moduli of equivariant sheaves over projective Gamma-schemes, for a finite group Gamma. We introduce the notion of Kronecker-McKay modules and construct the moduli of equivariant sheaves using a natural functor from the category of equivariant sheaves to the category of Kronecker-McKay modules. Following Alvarez-Consul and King, we also study theta functions and homogeneous co-ordinates of moduli of equivariant sheaves.