43 resultados para food dye
Resumo:
In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO(2) photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm(2) leading to a cell efficiency of 6.50% which is comparable to that of Platinum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.
Resumo:
In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.
Resumo:
We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.
Resumo:
Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.
Resumo:
Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks. A few macaques appropriately modified their problem-solving behavior in accordance with the task requirements and solved the modified versions of the tasks without trial-and-error learning. These observations are ecologically relevant - they demonstrate considerable local differences in food extraction abilities, between-individual variation and within-individual consistency in food extraction techniques among free-ranging bonnet macaques, possibly affecting the species' local adaptability and resilience to environmental changes.
Resumo:
Rapid and facile synthesis of similar to 7 nm and similar to 100-400 nm nano-structures of anatase titania is achieved by exploiting the chemical nature of solvents through a microwave based approach. After using these nanostructures as a photoanode in dye-sensitized solar cells, a modest yet appreciable efficiency of 6.5% was achieved under the illumination of AM 1.5 G one sun (100 mW cm(-2)).
Resumo:
The low level, denuded, laterite landscape of coastal Uttara Kannada has a rich diversity of monsoon herbs, including threatened and newly discovered ones. Our study reveals that honey bees congregate on the ephemeral herb community of Utricularias, Eriocaulons and Impatiens during their gregarious monsoon flowering period. Apis dorsata had highest visitations on Utricularias, Impatiens and Flacourtia indica, whereas Trigona preferred Eriocaulons. Laterite herb flora merits conservation efforts as a keystone food resource for the insect community, especially for honey bees.
Resumo:
A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).