130 resultados para fire resistance
Resumo:
Following a Migdal-Kadanoff-type bond moving procedure, we derive the renormalisation-group equations for the characteristic function of the full probability distribution of resistance (conductance) of a three-dimensional disordered system. The resulting recursion relations for the first two cumulants, K, the mean resistance and K ~ t,he meansquare deviation of resistance exhibit a mobility edge dominated by large dispersion, i.e., K $ ’/ K=, 1, suggesting inadequacy of the one-parameter scaling ansatz.
Resumo:
The seizure resistance of cast graphite-aluminium composite alloys containing graphite particles of various sizes was studied using a Hohman wear tester. If the graphite content is more than 2% these alloys can be selfmated without seizure under conditions of boundary lubrication. The size and shape of the graphite particles had no significant effect on seizure resistance. Owing to the extensive deformation and fragmentation of graphite, the low yield strength of the aluminium matrix and the low flow stress of the graphite particles, a continuous layer of graphite is formed on the mating surfaces even after a short running-in period. This layer persisted even after extensive wear deformation.
Resumo:
The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.
Resumo:
Transduction of resistance to isoniazid and streptomycin as well as susceptibility to isoniazid in Mycobacterium smegmatis SN2 has been demonstrated. A method has been described for the selection of isoniazid-susceptible variants after transduction of susceptibility.
Resumo:
A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.
Resumo:
An analysis of gas absorption accompanied by chemical reaction in the presence of interfacial resistance is presented. The analysis indicates that the effect of interfacial resistance on interphase mass transfer is significantly higher in presence of a reaction compared to the pure absorption case. For fixed values of surface resistance and contact time, the difference between the amount of gas transferred across the interface with and without surface resistance increases as the value of reaction velocity increases. For ranges of contact time and surface resistance of practical relevance, the influence of surface resistance is too high to be neglected while designing gas-liquid contactors.
Resumo:
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.
Resumo:
Seizure resistance of several cast aluminium base alloys has been examined using a standard Hohman Wear Tester. Disks of aluminium base alloys were run against a standard aluminium 12% silicon base alloy. The seizure resistance of the alloys (as measured by the lowest bearing parameter reached before seizure) increased with hardness, yield and tensile strength. In Al-Si-Ni alloys where silicon and nickel have little solid solubility in α-aluminium and Si and Ni Al3 hard phases are formed, the minimum bearing parameter decreased with the parameter V (The product of vol. % of hard phases in the disk and the shoe). Apparently the silicon and NiAl3 particles provided discontinuities in the matrix and reduced the probability (1 − V) of the α-aluminium phase in the disk coming into contact with the α-aluminium phase in the shoe. The copper and magnesium containing Al-Si-Ni alloys with lesser volumes of hard phases exhibit considerably better seizure resistance indicating that a slight increase in the solute content or the hardness of the primary α-phase leads to a considerable increase in seizure resistance. Deformation during wear and seizure leads to fragmentation of the original hard particles into considerably smaller particles uniformly dispersed in the deformed α-aluminium matrix.
Resumo:
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.
Resumo:
A possible mechanism for the resistance minimum in dilute alloys in which the localized impurity states are non-magnetic is suggested. The fact is considered that what is essential to the Kondo-like behaviour is the interaction of the conduction electron spin s with the internal dynamical degrees of freedom of the impurity centre. The necessary internal dynamical degrees of freedom are provided by the dynamical Jahn-Teller effect associated with the degenerate 3d-orbitals of the transition-metal impurities interacting with the surrounding (octahedral) complex of the nearest-neighbour atoms. The fictitious spin I characterizing certain low-lying vibronic states of the system is shown to couple with the conduction electron spin s via s-d mixing and spin-orbit coupling, giving rise to a singular temperature-dependent exchange-like interaction. The resistivity so calculated is in fair agreement with the experimental results of Cape and Hake for Ti containing 0.2 at% of Fe.
Resumo:
Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is similar to 7 V above room temperature.
Resumo:
The vertical uplift resistance of circular plate anchors, embedded horizontally in a clayey stratum whose cohesion increases linearly with depth, has been obtained under undrained (phi = 0) condition. The axi-symmetric static limit analysis formulation in combination with finite elements proposed recently by the authors has been employed. The variation of the uplift factor (F,) with changes in the embedment ratio (H/B) has been computed for several rates of increases of soil cohesion with depth. It is noted that in all the cases, the magnitude of F-c increases continuously with depth up to a certain value of H-cr/B beyond which the uplift factor becomes essentially constant. The proposed static limit analysis formulation is seen to provide acceptable results even for the two other simple chosen axi-symmetric problems.
Resumo:
The present paper records the results of a case study on the impact of an extensive grassland fire on the physical and optical properties of aerosols at a semi-arid station in southern India for the first time from ground based measurements using a MICROTOPS-II sunphotometer, an aethalometer and a quartz crystal microbalance impactor (QCM). Observations revealed a substantial increase in aerosol optical depth (AOD) at all wavelengths during burning days compared to normal days. High AOD values observed at shorter wavelengths suggest the dominance of accumulation mode particle loading over the study area. Daily mean aerosol size spectra shows, most of the time, power-law distribution. To characterize AOD, the Angstrom parameters (i.e., alpha and beta) were used. Wavelength exponent (1.38) and turbidity coefficient (0.21) are high during burning days compared to normal days, thereby suggesting an increase in accumulation mode particle loading. Aerosol size distribution suggested dominance of accumulation mode particle loading during burning days compared to normal days. A significant positive correlation was observed between AOD at 500 mn and water vapour and negative correlation between AOD at 500 nm and wind speed for burning and non-burning days. Diurnal variations of black carbon (BC) aerosol mass concentrations increased by a factor of similar to 2 in the morning and afternoon hours during burning period compared to normal days.
Resumo:
T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.