403 resultados para field trip
Resumo:
An expression is derived for the probability that the determinant of an n x n matrix over a finite field vanishes; from this it is deduced that for a fixed field this probability tends to 1 as n tends to.
Resumo:
A set of coils has been designed and constructed for generating magnetic field gradients for a Faraday magnetometer. We have obtained a gradient of magnitude -1 1 kOe m-' (8.75 x lo5 A m-') in an air gap of 42 mm for a current of 12 A passing through the coils.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.
Resumo:
A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.
Resumo:
The Wilson coefficient corresponding to the gluon-field strength GμνGμν is evaluated for the nucleon current correlation function in the presence of a static external electromagnetic field, using a regulator mass Λ to separate the high-momentum part of the Feynman diagrams. The magnetic-moment sum rules are analyzed by two different methods and the sensitivity of the results to variations in Λ are discussed.
Resumo:
Several channels provided by many-body couplings — both fermion-fermion and fermion-boson — for the evolution of the chemisorption system are discussed. This provides an opportunity of a systematic study of the effects of correlations reflected through the intricate pole structure of the absorbate Green functions. The results of Newns, Anda and others in the context of chemisorption are generalized.
Resumo:
This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81·6%; human energy, 7·7%; animal energy, 2·7%; kerosene, 2·1%; electricity, 0·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88·3%; industry, 4·7%; agriculture, 4·3%; lighting, 2·2% and transport, 0·5%. The total annual per capita energy consumption was 12·6 ± 1·2 GJ, giving an average annual household consumption of around 78·6 GJ.
Resumo:
Electromagnetically induced transparency (EIT) experiments in Lambda-type systems benefit from the use of hot vapor where the thermal averaging results in reducing the width of the EIT resonance well below the natural linewidth. Here, we demonstrate a technique for further reducing the EIT width in room-temperature vapor by the application of a small longitudinal magnetic field. The Zeeman shift of the energy levels results in the formation of several shifted subsystems; the net effect is to create multiple EIT dips each of which is significantly narrower than the original resonance. We observe a reduction by a factor of 3 in the D2 line of 87Rb with a field of 3.2 G.
Resumo:
The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
We present a low-frequency electrical noise measurement in graphene based field effect transistors. For single layer graphene (SLG), the resistance fluctuations is governed by the screening of the charge impurities by the mobile charges. However, in case of Bilayer graphene (BLG), the electrical noise is strongly connected to its band structure, and unlike single layer graphene, displays a minimum when the gap between the conduction and valence band is zero. Using double gated BLG devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.