201 resultados para fiducial diffraction pattern
Resumo:
Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.
Resumo:
Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.
Resumo:
Ferroelectric superlattice structures consisting of alternating layers of BaTiO3 and SrTiO3 with variable interlayer thickness were grown on Pt (111)/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The presence of superlattice reflections in the x-ray diffraction pattern clearly showed the superlattice behavior of the fabricated structures over a range of 6.4–20 nm individual layer thicknesses. Depth profile conducted by secondary ion mass spectrometry analysis showed a periodic concentration of Ba and Sr throughout the film. Polarization hysteresis and the capacitance-voltage characteristics of these films show clear size dependent ferroelectric characteristics. The spontaneous (Ps) and remnant (Pr) polarizations increase gradually with decreasing periodicity, reach a maximum at a finite thickness and then decrease. The competition between the size effect and long-range ferroelectric interaction is suggested as a possible reason for this phenomenon. The temperature dependence of Ps and Pr shows a single ferroelectric phase transition, and the Curie temperature is estimated to be about 316 K. The curve shows that the ferroelectric superlattice tends to form an artificial material, responding as a single structure with an averaged behavior of both the parent systems.
Resumo:
Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.
Resumo:
We fabricated a reflectance based sensor which relies on the diffraction pattern generated from a bio-microarray where an underlying thin film structure enhances the diffracted intensity from molecular layers. The zero order diffraction represents the background signal and the higher orders represent the phase difference between the array elements and the background. By taking the differential ratio of the first and zero order diffraction signals we get a quantitative measure of molecular binding while simultaneously rejecting common mode fluctuations. We improved the signal-to-noise ratio by an order of magnitude with this ratiometric approach compared to conventional single channel detection. In addition, we use a lithography based approach for fabricating microarrays which results in spot sizes as small as 5 micron diameter unlike the 100 micron spots from inkjet printing and is therefore capable of a high degree of multiplexing. We will describe the real-time measurement of adsorption of charged polymers and bulk refractometry using this technique. The lack of moving parts for point scanning of the microarray and the differential ratiometric measurements using diffracted orders from the same probe beam allows us to make real-time measurements in spite of noise arising from thermal or mechanical fluctuations in the fluid sample above the sensor surface. Further, the lack of moving parts leads to considerable simplification in the readout hardware permitting the use of this technique in compact point of care sensors.
Resumo:
Doping of TiO2 with a suitable metal ion where dopant redox potential couples with that of titanium (Ti4+) and act as catalyst for additional reduction of Ti4+ to Ti2+ (Ti4+ -> Ti3+ -> Ti2+) is envisaged here to enhance lithium storage even higher than one Li/TiO2. Accordingly, 10 atom% Pt ion substituted TiO2, Ti0.9Pt0.1O2 nanocrystallites was synthesized by sonochemical method using diethylenetriamine (DETA) as complexing agent. Powder X-ray diffraction pattern (XRD), Rietveld refinement and TEM study reveals that Ti0.9Pt0.1O2 nanocrystallites of similar to 4 nm size crystallize in anatase structure. X-ray photo-electron spectroscopy (XPS) study confirms that and both Ti and Pt are in 4+ oxidation state. Due to Pt4+ ion substitution in TiO2, reducibility of TiO2 was enhanced and Ti4+ was reduced up to Ti2+ state via coupling of Pt states (Pt4+/Pt2+/Pt-0) with Ti states (Ti4+/Ti3+/Ti2+). Galvanostatic cycling of Ti0.9Pt0.1O2 against lithium showed very high capacity of 430 mAhg(-1) or exchange of similar to 1.5Li/Ti0.9Pt0.1O2. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.029208jes] All rights reserved.
Resumo:
A temperature dependent neutron powder diffraction study, in conjunction with dielectric and ferroelectric characterization, of slightly Ca modified Na0.5Bi0.5TiO3 (NBT) revealed an instability with regard to a non-polar orthorhombic (Pbnm) distortion above room temperature. This intermediate orthorhombic phase has earlier been reported for unmodified NBT by electron diffraction studies, but has never been captured by global (x-ray/neutron) diffraction techniques. Calcium substitution seems to amplify the magnitude of this intermediate orthorhombic distortion thereby making the corresponding superlattice reflections become visible in the neutron diffraction pattern. The study revealed the following sequence of very complex structural evolution with temperature: Cc -> Cc + Pbnm -> Pbnm + P4/mbm -> P4/mbm -> Pm (3) over barm.
Resumo:
Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.
Resumo:
We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.
Resumo:
We investigated the structural and magnetic properties of SmCo5/Co exchange coupled nanocomposite thin films grown by magnetron sputtering from Sm and Co multitargets successively. The growth of the films was carried out at elevated substrate temperature followed by in situ annealing. On Si (100) substrate, X-ray diffraction confirms the formation of textured (110) SmCo5 hard phase, whereas on MgO (110) substrate, the diffraction pattern shows the epitaxial growth of SmCo5 phase with crystalline orientation along 100] direction. Secondary Ion Mass Spectroscopy reveals the structural transformation from multilayered (Sm/Co) to SmCo5/Co nano-composite films due to high reactivity of Sm at elevated temperature. Transmission electron microscopy indicates the existence of nanocrystalline phase of SmCo5 along with unreacted Co. Observed single phase behavior in magnetic hysteresis measurements indicates well exchange coupling between the soft and the hard phases in these nano-composite films. For samples with samarium layer thickness, t(sm)=3.2 nm and cobalt layer thickness, t(Co)= 11.4 nm, the values of (BH)(max) were obtained as 20.1 MGOe and 12.38 MGOe with H-c value similar to 3.0 kOe grown on MgO and Si substrates, respectively.
Resumo:
Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.
Resumo:
The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.