298 resultados para energipolitiska mål
Resumo:
Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.
Resumo:
The Generalized Distributive Law (GDL) is a message passing algorithm which can efficiently solve a certain class of computational problems, and includes as special cases the Viterbi's algorithm, the BCJR algorithm, the Fast-Fourier Transform, Turbo and LDPC decoding algorithms. In this paper GDL based maximum-likelihood (ML) decoding of Space-Time Block Codes (STBCs) is introduced and a sufficient condition for an STBC to admit low GDL decoding complexity is given. Fast-decoding and multigroup decoding are the two algorithms used in the literature to ML decode STBCs with low complexity. An algorithm which exploits the advantages of both these two is called Conditional ML (CML) decoding. It is shown in this paper that the GDL decoding complexity of any STBC is upper bounded by its CML decoding complexity, and that there exist codes for which the GDL complexity is strictly less than the CML complexity. Explicit examples of two such families of STBCs is given in this paper. Thus the CML is in general suboptimal in reducing the ML decoding complexity of a code, and one should design codes with low GDL complexity rather than low CML complexity.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
In this paper, we give a new framework for constructing low ML decoding complexity space-time block codes (STBCs) using codes over the Klein group K. Almost all known low ML decoding complexity STBCs can be obtained via this approach. New full- diversity STBCs with low ML decoding complexity and cubic shaping property are constructed, via codes over K, for number of transmit antennas N = 2(m), m >= 1, and rates R > 1 complex symbols per channel use. When R = N, the new STBCs are information- lossless as well. The new class of STBCs have the least knownML decoding complexity among all the codes available in the literature for a large set of (N, R) pairs.
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
A low complexity, essentially-ML decoding technique for the Golden code and the three antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs)-the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give a set of sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the three and four antenna Perfect codes, the three antenna Threaded Algebraic Space-Time code and the four antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm have the least decoding complexity and best error performance among all known codes for transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
The problem of designing good Space-Time Block Codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well known technique of decoding STBCs as Conditional ML (CML) decoding. In [1], we introduced a framework to construct ML decoders for STBCs based on the Generalized Distributive Law (GDL) and the Factor-graph based Sum-Product Algorithm, and showed that for two specific families of STBCs, the Toepltiz codes and the Overlapped Alamouti Codes (OACs), the GDL based ML decoders have strictly less complexity than the CML decoders. In this paper, we introduce a `traceback' step to the GDL decoding algorithm of STBCs, which enables roughly 4 times reduction in the complexity of the GDL decoders proposed in [1]. Utilizing this complexity reduction from `traceback', we then show that for any STBC (not just the Toeplitz and Overlapped Alamouti Codes), the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from Cyclic Division Algebras that is not multigroup or conditionally multigroup decodable, the GDL decoder provides approximately 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only about half as complex as the CML decoder.
Resumo:
A double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed to detect Echis carinatus venom in various organs (brain, heart, lungs, liver, spleen and kidneys) as well as tissue at the site of injection of mice, at various time intervals (1, 6, 12, 18, 24 h and 12 h intervals up to 72 h) after death. The assay could detect E. carinatus venom levels up to 2.5 ng/ml of tissue homogenate and the venom was detected up to 72 h after death. A highly sensitive and species-specific avidin-biotin microtitre ELISA was also developed to detect venoms of four medically important Indian snakes (Bungarus caeruleus, Naja naja, E. carinatus and Daboia russelli russelli) in autopsy specimens of human victims of snake bite. The assay could detect venom levels as low as 100 pg/ml of tissue homogenate. Venoms were detected in brain, heart, lungs, liver, spleen, kidneys, tissue at the bite area and postmortem blood. In all 12 human victim cadavers tested the culprit species were identified. As observed in mice, tissue at the site of bite area showed the highest concentration of venom and the brain showed the least. Moderate amounts of venoms were found in liver, spleen, kidneys, heart and lungs. Development of a simple, rapid and species-specific diagnostic kit based on this ELISA technique useful to clinicians is discussed.
Resumo:
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.
Resumo:
Perforated element mufflers have been known to have good acousticp erformancew, henu sedo n automotive xhausst ystemsIn. thel astd ecadea nda half, plugm ufflersc, oncentrihc oler esonators, and three-ductc losed-endp erforatede lementsh ave been studied.T he presenti nvestigation concernso pen-endedt,h ree-ducpt erforatede lementsw, hich are knownt o combineh igh acoustic transmissiolno ss with low back pressuresT. he governinge quationsh ave been solved in the frequencyd omain,u singt he recouplinga pproacha longw ith appropriatbe oundaryc onditionst,o derivet he transferm atrixa ndt hent o calculaten oiser eductiona ndt ransmissiolno ss.T he predicted noiser eductionv aluesh aveb eens hownt o corroboratew ell with experimentallyo bservedv alues. Finally,p arametrics tudiesh aveb eend onet o draw designc urvesf or suchm ufflers.
Diffraction Of Elastic Waves By Two Parallel Rigid Strips Embedded In An Infinite Orthotropic Medium
Resumo:
The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.
Resumo:
The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day '0' of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5, 25 and 100 mu M) for 3 h at 37 degrees C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls, In addition the in vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15-90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6-15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6-9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCG added in vitro, The in vitro response of luteal cells to added hCG was inhibited by 0, 50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6-9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP, The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12-15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain of in vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days.
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average Power Ratio (PAPR) and avoid the problem of switching off antennas. But square CODs for 2(a) antennas with a + 1. complex variables, with no zero entries were discovered only for a <= 3 and if a + 1 = 2(k), for k >= 4. In this paper, a method of obtaining no zero entry (NZE) square designs, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. Then, starting from a so constructed NZE CPOD for n = 2(a+1) antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas, successively. Compared to the CODs, CPODs have slightly more ML decoding complexity for rectangular QAM constellations and the same ML decoding complexity for other complex constellations. Using the recently constructed NZE CODs for 8 antennas our method leads to NZE CPODs for 16 antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulation results show that bit error performance of our codes is same as that of the CODs under average power constraint and superior to CODs under peak power constraint.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.