147 resultados para eigenvalue functions
Resumo:
Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.
Resumo:
(i) Incistrans pairs of cyclic 1,3-dicarboxylic acid ethyl esters thecis-foms exhibit higher O-methylene proton (HA, HB) anisochrony than thetrans-forms; (ii) anisochrony, easily observed in certain decalin-10-carboxylic ethyl esters, ‘disappears’ on one of the rings attaining the possibility of transforming into a ‘twist’ form; (iii) in certain pairs of chiralsecethyl esters and theirtert-methylated analogues anisochrony is higher in the latter, contrary to expectation, while, in certain others, the reverse is observed. Attempted explanations are based on assessments whether H A and H B are or are not in highly different magnetic environments in confomers regarded as preferred. This subsumes the possibility thatXYZC-CO2H A H B Me chiral ethyl acetates differ fromXYZC-CH A H B Me ethanes because intervention by the carboxyl group insulates the prochiral centre and allows anisotropic effects to gain somewhat in importance among mechanisms that discriminate between H A and H B so long as rotamerpopulation inequalities persist. Background information on why rotamer-population inequalities will always persist and on a heuristic that attempts to generalize the effects ofXYZ inXYZC - CU AUB V is provided. Possible effects when connectivity exists between a pair amongX, Y, Z or when specific interactions occur betweenV andX, Y orZ are considered. An interpretation in terms of ‘increasing conformational mobility’ has been suggested for the observed increase in the rate of temperature-dependence of O-methylene anisochrony down a series of chiral ethyl esters.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
A modification in the algorithm for the detection of totally symmetric functions as expounded by the author in an earlier note1 is presented here. The modified algorithm takes care of a limited number of functions that escape detection by the previous method.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
A unate function can easily be identified on a Karnaugh map from the well-known property that it cons ist s only ofess en ti al prime implicante which intersect at a common implicant. The additional property that the plot of a unate function F(x, ... XII) on a Karnaugh map should possess in order that F may also be Ivrealizable (n';:; 6) has been found. It has been sh own that the I- realizability of a unate function F corresponds to the ' compac tness' of the plot of F. No resort to tho inequalities is made, and no pre-processing such as positivizing and ordering of the given function is required.
Resumo:
It is shown that at most, n + 3 tests are required to detect any single stuck-at fault in an AND gate or a single faulty EXCLUSIVE OR (EOR) gate in a Reed-Muller canonical form realization of a switching function.
Resumo:
A nonexhaustive procedure for obtaining minimal Reed-Muller canonical (RMC) forms of switching functions is presented. This procedure is a modification of a procedure presented earlier in the literature and enables derivation of an upper bound on the number of RMC forms to be derived to choose a minimal one. It is shown that the task of obtaining minimal RMC forms is simplified in the case of symmetric functions and self-dual functions.
Resumo:
We extend some of the classical connections between automata and logic due to Büchi (1960) [5] and McNaughton and Papert (1971) [12] to languages of finitely varying functions or “signals”. In particular, we introduce a natural class of automata for generating finitely varying functions called View the MathML source’s, and show that it coincides in terms of language definability with a natural monadic second-order logic interpreted over finitely varying functions Rabinovich (2002) [15]. We also identify a “counter-free” subclass of View the MathML source’s which characterise the first-order definable languages of finitely varying functions. Our proofs mainly factor through the classical results for word languages. These results have applications in automata characterisations for continuously interpreted real-time logics like Metric Temporal Logic (MTL) Chevalier et al. (2006, 2007) [6] and [7].
Resumo:
Close relationships between guessing functions and length functions are established. Good length functions lead to good guessing functions. In particular, guessing in the increasing order of Lempel-Ziv lengths has certain universality properties for finite-state sources. As an application, these results show that hiding the parameters of the key-stream generating source in a private key crypto-system may not enhance the privacy of the system, the privacy level being measured by the difficulty in brute-force guessing of the key stream.
Resumo:
A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.