70 resultados para digital subtraction
Resumo:
In an earlier paper (Part I) we described the construction of Hermite code for multiple grey-level pictures using the concepts of vector spaces over Galois Fields. In this paper a new algebra is worked out for Hermite codes to devise algorithms for various transformations such as translation, reflection, rotation, expansion and replication of the original picture. Also other operations such as concatenation, complementation, superposition, Jordan-sum and selective segmentation are considered. It is shown that the Hermite code of a picture is very powerful and serves as a mathematical signature of the picture. The Hermite code will have extensive applications in picture processing, pattern recognition and artificial intelligence.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.
Resumo:
A versatile and flexible digital pulse programmer for two-pulse, three-pulse, saturation burst and Carr-Purcell sequences is described. Independently variable controls for pulse widths (0.2 mu s to 100 mu s), delay between pulses (0.2 mu s to 100 s) and for number of pulses (1 to 99) for the saturation burst and for the Carr-Purcell sequence, are brought to the front panel. The programmer can be used for one-shot experiments as well as for repetitive experiments.
Resumo:
A module containing all the functional components required for a digital absolute positioning process of one axis of a machine tool has been designed and constructed. Circuit realization makes use of integrated circuit elements.
Resumo:
We present experimental validation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object autocorrelation,namely, the zero-order term,from holographic data,thereby improving the reconstruction bandwidth of complex wavefronts. The algorithm is based on nonlinear filtering and can be applied to standard DHM setups with realistic recording conditions.We study the robustness of the technique under different experimental configurations,and quantitatively demonstrate its enhancement capabilities on phase signals.
Resumo:
This paper describes the application of lensless in-line digital holographic microscopy (DHM) to carry out thermo-mechanical characterization of microheaters fabricated through PolyMUMPs three-layer polysilicon surface micromachining process and subjected to a high thermal load. The mechanical deformation of the microheaters on the electrothermal excitation due to thermal stress is analyzed. The numerically reconstructed holographic images of the microheaters clearly indicate the regions under high stress. A double-exposure method has been used to obtain the quantitative measurements of the deformations, from the phase analysis of the hologram fringes. The measured deformations correlate well with the theoretical values predicted by a thermo-mechanical analytical model. The results show that lensless in-line DHM with Fourier analysis is an effective method for evaluating the thermo-mechanical characteristics of MEMS components.
Resumo:
Window technique is one of the simplest methods to design Finite Impulse Response (FIR) filters. It uses special functions to truncate an infinite sequence to a finite one. In this paper, we propose window techniques based on integer sequences. The striking feature of the proposed work is that it overcomes all the problems posed by floating point numbers and inaccuracy, as the sequences are made of only integers. Some of these integer window sequences, yield sharp transition, while some of them result in zero ripple in passband and stopband.
Resumo:
Subtraction of one complex spatial function from another can be accomplished holographically by shifting the phase of the reference beam by pi between the two exposures. A simple and reliable system for this purpose, which makes use of the fact that the beam from a gas laser is usually plane-polarized, is described, and its application to obtain the equivalent of a dark field with the frozen-fringe technique in holographic interferometry is demonstrated.
Resumo:
Frequency response analysis is critical in understanding the steady and transient state behavior of any electrical network. Network analyzeror frequency response analyzer is used to determine the frequency response of an electrical network. This paper deals with the design of an inexpensive digitally controlled Network Analyzer. The frequency range of the network analyzer is from 10Hz to 50kHz (suitable range for system studies on most power electronics apparatus). It is composed of a microcontroller (as central processing unit) and a personal computer (as analyzer and display). The communication between the microcontroller and personal computer is established through one of the USB ports. The testing and evaluation of the analyzer is done with RC, RLC and multi-resonant circuits. The design steps, basis of analysis, experimental results, limitation in bandwidth and possible techniques for improvement in performances are presented.
Resumo:
Inverse filters are conventionally used for resolving overlapping signals of identical waveshape. However, the inverse filtering approach is shown to be useful for resolving overlapping signals, identical or otherwise, of unknown waveshapes. Digital inverse filter design based on autocorrelation formulation of linear prediction is known to perform optimum spectral flattening of the input signal for which the filter is designed. This property of the inverse filter is used to accomplish composite signal decomposition. The theory has been presented assuming constituent signals to be responses of all-pole filters. However, the approach may be used for a general situation.
Resumo:
This paper presents the detailed dynamic digital simulation for the study of phenomenon of torsional interaction between HVDC-Turbine generator shaft, dynamics using the novel converter model presented in [ 1 ] The system model includes detailed representation of the synchronous generator and the shaft dynamics, the ac and dc network transients. The results of a case study indicate the various factors that influence the torsional interaction.
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
A computerized non-linear-least-squares regression procedure to analyse the galvanostatic current-potential data for kinetically hindered reactions on porous gas-diffusion electrodes is reported. The simulated data fit well with the corresponding measured values. The analytical estimates of electrode-kinetic parameters and uncompensated resistance are found to be in good agreement with their respective values obtained from Tafel plots and the current-interrupter method. The procedure circumvents the need to collect the data in the limiting-current region where the polarization values are usually prone to errors. The polarization data for two typical cases, namely, methanol oxidation on a carbon-supported platinum-tin electrode and oxygen reduction on a Nafion-coated platinized carbon electrode, are successfully analysed.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd