87 resultados para deep level approach
Resumo:
We report the temperature-dependent photoluminescence and Raman spectra of In2O3 octahedrons synthesized by an evaporation condensation process. The luminescence obtained here is due to the defect-related deep level emission, which shows highly temperature-dependent behavior in 83-573 K range. Both the position as well as the intensity varies with temperature. Similarly, Raman spectroscopy in 83-303 K range shows temperature-dependent variation in peak intensity but no change in the peak position. Interestingly, the variation of intensity for different peaks is consistent with Placzek theory which invokes the possibility of temperature sensing. We demonstrate the reversibility of peak intensity with temperature for consecutive cycles and excellent stability of the octahedrons toward cryogenic temperature sensing. Overall, both the temperature-dependent photoluminescence and Raman spectra can be explored to determine temperature in the cryogenic range at micro/nano length scales. As an example, we evaluate the temperature-dependent Raman spectra of WO3 that undergoes a phase transition around 210 K and temperature-dependent luminescence of Rhodamine 6G (Rh6G) where intensity varies with temperature.
Resumo:
High-kappa TiO2 thin films have been fabricated from a facile, combined sol-gel spin - coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO2 with a small grain size of 18 nm. The refractive index `n' quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 angstrom. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO2 were studied by capacitance - voltage (C - V) and deep level transient spectroscopy (DLTS). The flat - band voltage (V-FB) and the density of slow interface states estimated are -0.9, -0.44 V and 5.24x10(10), 1.03x10(11) cm(-2); for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross -sections measured by DLTS are E-V + 0.30, E-C - 0.21 eV; 8.73x10(11), 6.41x10(11) eV(-1) cm(-2) and 5.8x10(-23), 8.11x10(-23) cm(2) for the NMOS and PMOS structures, respectively. A low value of interface state density in both P-and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent. (C) 2015 Author(s).
Resumo:
This paper presents the site classification of Bangalore Mahanagar Palike (BMP) area using geophysical data and the evaluation of spectral acceleration at ground level using probabilistic approach. Site classification has been carried out using experimental data from the shallow geophysical method of Multichannel Analysis of Surface wave (MASW). One-dimensional (1-D) MASW survey has been carried out at 58 locations and respective velocity profiles are obtained. The average shear wave velocity for 30 m depth (Vs(30)) has been calculated and is used for the site classification of the BMP area as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs(30) values major part of the BMP area can be classified as ``site class D'', and ``site class C'. A smaller portion of the study area, in and around Lalbagh Park, is classified as ``site class B''. Further, probabilistic seismic hazard analysis has been carried out to map the seismic hazard in terms spectral acceleration (S-a) at rock and the ground level considering the site classes and six seismogenic sources identified. The mean annual rate of exceedance and cumulative probability hazard curve for S. have been generated. The quantified hazard values in terms of spectral acceleration for short period and long period are mapped for rock, site class C and D with 10% probability of exceedance in 50 years on a grid size of 0.5 km. In addition to this, the Uniform Hazard Response Spectrum (UHRS) at surface level has been developed for the 5% damping and 10% probability of exceedance in 50 years for rock, site class C and D These spectral acceleration and uniform hazard spectrums can be used to assess the design force for important structures and also to develop the design spectrum.
Resumo:
Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.
Resumo:
Displaced squeezed states are proposed as variational ground states for phonons (Bose fields) coupled to two-level systems (spin systems). We have investigated the zero-temperature phase diagram for the localization-delocalization transition of a tunneling particle interacting with an Ohmic heat bath. Our results are compared with known existing approximate treatments. A modified phase diagram using the displaced squeezed state is presented.
Resumo:
Clustering techniques are used in regional flood frequency analysis (RFFA) to partition watersheds into natural groups or regions with similar hydrologic responses. The linear Kohonen's self‐organizing feature map (SOFM) has been applied as a clustering technique for RFFA in several recent studies. However, it is seldom possible to interpret clusters from the output of an SOFM, irrespective of its size and dimensionality. In this study, we demonstrate that SOFMs may, however, serve as a useful precursor to clustering algorithms. We present a two‐level. SOFM‐based clustering approach to form regions for FFA. In the first level, the SOFM is used to form a two‐dimensional feature map. In the second level, the output nodes of SOFM are clustered using Fuzzy c‐means algorithm to form regions. The optimal number of regions is based on fuzzy cluster validation measures. Effectiveness of the proposed approach in forming homogeneous regions for FFA is illustrated through application to data from watersheds in Indiana, USA. Results show that the performance of the proposed approach to form regions is better than that based on classical SOFM.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.
Resumo:
The link between atmospheric CO2 level and ventilation state of the deep ocean is poorly understood due to the lack of coherent observations on the partitioning of carbon between atmosphere and ocean. In this Southern Ocean study, we have classified the Southern Ocean into different zones based on its hydrological features and have binned the variability in latitudinal air-CO2 concentration and its isotopic ratios. Together with air-CO2, we analysed the surface water for the isotopic ratios in dissolved inorganic carbon (DIC). Using the binary mixing approach on the isotopic ratio of atmospheric CO2 and its concentration, we identified the delta C-13 value of source CO2. The isotopic composition of source CO2 was around -9.22 +/- 0.26 parts per thousand for the year 2011 and 2012, while a composition of -13.49 +/- 4.07 parts per thousand was registered for the year 2013. We used the delta C-13 of DIC to predict the CO2 composition in air under equilibrium and compared our estimates with actual observations. We suggest that the degeneration of the DIC in presence of warm water in the region was the factor responsible for adding the CO2 to the atmosphere above. The place of observation coincides with the zone of high wind speed which promotes the process of CO2 exsolution from sea water. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
This paper presents a chance-constrained linear programming formulation for reservoir operation of a multipurpose reservoir. The release policy is defined by a chance constraint that the probability of irrigation release in any period equalling or exceeding the irrigation demand is at least equal to a specified value P (called reliability level). The model determines the maximum annual hydropower produced while meeting the irrigation demand at a specified reliability level. The model considers variation in reservoir water level elevation and also the operating range within which the turbine operates. A linear approximation for nonlinear power production function is assumed and the solution obtained within a specified tolerance limit. The inflow into the reservoir is considered random. The chance constraint is converted into its deterministic equivalent using a linear decision rule and inflow probability distribution. The model application is demonstrated through a case study.
Resumo:
We consider an axially loaded Timoshenko rotor rotating at a constant speed and derive its governing equations from a continuum viewpoint. The primary aim of this paper is to understand the source and role of gyroscopic terms, when the rotor is viewed not as a Timoshenko beam but as a genuine 3D continuum. We offer the primary insight that macroscopically observed gyroscopic terms may also, quite equivalently, be viewed as external manifestations of internally existing spin-induced prestresses at the continuum level. To demonstrate this idea with an analytical example (the Timoshenko rotor), we have studied the reliable equations of Choi et al. (Journal of Vibration and Acoustics, 114, 1992, 249-259). Using a straightforward application of our insight in the framework of nonlinear elasticity, we obtain equations that exactly match Choi et al. for the case with no axial load. For the case of axial preload, our straightforward formulation leads to a slightly different set of equations that have negligible numerical consequence for solid rotors. However, we offer a macroscopic, intuitive, justification for modifying our formulation so as to obtain the exact equations of Choi et al. with the axial load included.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.