57 resultados para critical intraband interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes; Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA, The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a. property similar to the eukaryotic type I topoisomerases, The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural stabilizing property of 2,2,2-trifluoroethanol (TFE) in peptides has been widely demonstrated, More recently, TFE has been shown to enhance secondary structure content in globular proteins, and to influence quaternary interactions in protein multimers. The molecular mechanisms by which TFE exerts its Influence on peptide and protein structures remain poorly understood. The present analysis integrates the known physical properties of TFE with a variety of experimental observations on the interaction of TFE with peptides and proteins and on the properties of fluorocarbons. Two features of TFE, namely the hydrophobicity of the trifluoromethyl group and the hydrogen bonding character (strong donor and poor acceptor), emerge as the most important factors for rationalising the observed effects of TFE. A model is proposed for TFE interaction with peptides which involves an initial replacement of the hydration shell by fluoroalcohol molecules, a process driven by apolar interactions and favourable entropy of dehydration. Subsequent bifurcated hydrogen-bond formation with peptide carbonyl groups, which leave intramolecular interactions unaffected, promotes secondary structure formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between Paenibacillus polymyxa with minerals such as hematite, corundum, quartz and kaolinite brought about significant surface chemical changes on all the minerals. Quartz and kaolinite were rendered more hydrophobic, while hematite and corundum, became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and corundum and of proteins on quartz and kaolinite was responsible for the above surface-chemical changes. Bio-pretreatment of the above iron ore mineral mixtures resulted in the selective separation of silica and alumina from iron oxide, through bioflotation and bioflocculation. The utility of bioprocessing in the beneficiation of iron ores is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational relaxation measurements on the CO asymmetric stretching mode (similar to 1980 cm(-1)) of tungsten hexacarbonyl (W(CO)(6)) as a function of temperature at constant density in several supercritical solvents in the vicinity of the critical point are presented. In supercritical ethane, at the critical density, there is a region above the critical temperature (Tc) in which the lifetime increases with increasing temperature. When the temperature is raised sufficiently (similar to T-c + 70 degrees C), the lifetime decreases with further increase in temperature. A recent hydrodynamic/thermodynamic theory of vibrational relaxation in supercritical fluids reproduces this behavior semiquantitatively. The temperature dependent data for fixed densities somewhat above and below the critical density is in better agreement with the theory. In fluoroform solvent at the critical density, the vibrational lifetime also initially increases with increasing temperature. However, in supercritical CO2 at the critical density, the temperature dependent vibrational lifetime decreases approximately linearly with temperature beginning almost immediately above T-c. The theory does not reproduce this behavior. A comparison between the absolute lifetimes in the three solvents and the temperature trends is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of friction stir welding (FSW) puts effective use frictional heat for the purpose of joining metallic materials. In this research article, we present and discuss an experimental method to determine the coefficient of friction during FSW. The experiments were conducted to study the interaction between the FSW tool (a die steel) and the base metal (a high strength aluminum alloy) at various contact pressures (13MPa, 26MPa, and 39MPa) and rotation speeds (200rpm, 600rpm, 1000rpm, and 1400rpm). The experimental results, the microstructure, and the process temperature reveal the experimental setup to be capable of simulating the conditions during FSW. The coefficient of friction was found to vary from 0.15 to 1.4, and the temperature increased to as high as 450C. The coefficient of friction was found to increase with temperature. There exists a critical temperature at which point a steep increase in the coefficient of friction was observed. The critical temperature decreases from 250C at a contact pressure of 26MPa to 200C at contact pressure of 34MPa. Below the critical temperature at a specific contact pressure the maximum coefficient of friction is 0.6, and above the critical temperature it reaches a value as high as 1.4. The steep increase in the coefficient of friction is found to be due to the seizure phenomenon and the contact condition during FSW between the tool and the workpiece (base metal) is found to be sticking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the effect of specific solute-solvent interactions on the diffusion of a solute probe is a long standing problem of physical chemistry. In this paper a microscopic treatment of this effect is presented. The theory takes into account the modification of the solvent structure around the solute due to this specific interaction between them. It is found that for strong, attractive interaction, there is an enhanced coupling between the solute and the solvent dynamic modes (in particular, the density mode), which leads to a significant increase in the friction on the solute. The diffusion coefficient of the solute is found to depend strongly and nonlinearly on the magnitude of the attractive interaction. An interesting observation is that specific solute-solvent interaction can induce a crossover from a sliplike to a sticklike diffusion. In the limit of strong attractive interaction, we recover a dynamic version of the solvent-berg picture. On the other hand, for repulsive interaction, the diffusion coefficient of the solute increases. These results are in qualitative agreement with recent experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravenous immunoglobulin (IVIg) is widely used to treat autoimmune diseases. Several mutually nonexclusive mechanisms are proposed to explain the beneficial effects of IVIg in patients (1, 2). Lately, Ravetch and colleagues (3) demonstrate that anti-inflammatory activity of IVIg is mediated mainly by antibodies that contain terminal _2,6-sialic acid linkages at the Asn297-linked glycan of Fc region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a process 5'-3' single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2+ or Mn2+ and inhibited by Cd2+ suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays, Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interactio between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.