102 resultados para convective strom
Resumo:
In this paper, a numerical investigation is performed to study the mixed convective flow and heat transfer characteristics past a square cylinder in cross flow at incidence. Utilizing air (Pr = 0.71) as an operating fluid, computations are carried out at a representative Reynolds number (Re) of 100. Angles of incidences are varied as, 0 degrees <= alpha <= 45 degrees. Effect of superimposed positive and negative cross-flow buoyancy is brought about by varying the Richardson number (RI) in the range -1.0 <= Ri <= 1.0. The detail features of flow topology and heat transport are analyzed critically for different angles of incidences. The thermo fluidic forces acting on the cylinder during mixed convection are captured in terms of the drag (C-D), lift (C-L), and moment (C-M) coefficients. The results show that the lateral width of the cylinder wake reduces with increasing alpha and the isotherms spread out far wide. In the range 0 degrees < alpha < 45 degrees, C-D reduces with increasing Ri. The functional dependence of C-M with Ri reveals a linear relationship. Thermal boundary layer thickness reduces with increasing angle of incidences. The global rate of heat transfer from the cylinder increases with increasing alpha. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms-(1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are colocated. Regions in the space of parameters characterizing the base flow velocity profile, i.e., shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on understanding prior experimental studies of combustion instability in backward facing step combustors and hydrodynamic instability in other flows such as heated jets and bluff body stabilized flames is discussed.
Resumo:
The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov-Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr)=6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, a, is varied between 0 and 2. The range of nanoparticle volume fractions (phi) considered is 0 <= phi <= 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration-deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in alpha and phi.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.
Resumo:
The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.
Resumo:
In this paper, we try to establish the equivalence or similarity in the thermal and physiochemical changes in precursor droplets (cerium nitrate) in convective and radiative fields. The radiative field is created through careful heating of the droplet using a monochromatic light source (CO2 laser). The equivalence is also established for different modes of convection like droplet injected into a high-speed flow and droplet experiencing a convective flow due to acoustic streaming (levitated) only. The thermophysical changes are studied in an aqueous cerium nitrate droplet, and the dissociation of cerium nitrate to ceria is modeled using modified Kramers' reaction rate formulation. It is observed that vaporization, species accumulation, and chemical characteristics obtained in a convectively heated droplet are retained in a radiatively heated droplet by careful adjustment of the laser intensity. The timescales and ceria yield match reasonably well for both the cases. It is also noted that similar conclusions are drawn in both levitated droplet and a nonlevitated droplet.
Resumo:
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.
Resumo:
In monsoon regions, the seasonal migration of the intertropical convergence zone (ITCZ) is manifested as a seasonal reversal of winds. Most of the summer monsoon rainfall over India occurs owing to synoptic and large-scale convection associated with the continental ITCZ (Fig. 1). We have investigated the interaction between these large-scale convective systems and the ocean over which they are generated1â3, concentrating on the relationship between organized convection over the Indian Ocean and sea surface temperature (SST). We report here that on a monthly basis the degree of cloudiness correlates well with SST for the relatively colder oceans, but when SST is maintained above 28 °C it ceases to be an important factor in determining the variability of cloudiness. Over the major regions of convection east of 70°E, which are warm year after year, the observed cloudiness cannot be correlated with variations in SST.
Resumo:
A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.
Resumo:
Closed-form solutions are presented for blood flow in the microcirculation by taking into account the influence of slip velocity at the membrane surface. In this study, the convective inertia force is neglected in comparison with that of blood viscosity on the basis of the smallness of the Reynolds number of the flow in microcirculation. The permeability property of the blood vessel is based on the well known Starling's hypothesis [11]. The effects of slip coefficient on the velocity and pressure fields are clearly depicted.
Resumo:
This is an experimental and theoretical Study of a laminar separation bubble and the associated linear stability mechanisms. Experiments were performed over a flat plate kept in a wind tunnel, with an imposed pressure gradient typical of an aerofoil that would involve a laminar separation bubble. The separation bubble was characterized by measurement of surface-pressure distribution and streamwise velocity using hot-wire anemometry. Single component hot-wire anemometry was also used for a detailed study of the transition dynamics. It was foundthat the so-called dead-air region in the front portion of the bubble corresponded to a region of small disturbance amplitudes, with the amplitude reaching a maximum value close to the reattachment point. An exponential growth rate of the disturbance was seen in the region upstream of the mean maximum height of the bubble, and this was indicative of a linear instability mechanism at work. An infinitesimal disturbance was impulsively introduced into the boundary layer upstream of separation location, and the wave packet was tracked (in an ensemble-averaged sense) while it was getting advected downstream. The disturbance was found to be convective in nature. Linear stability analyses (both the Orr-Sommerfeld and Rayleigh calculations) were performed for mean velocity profiles, starting from an attached adverse-pressure-gradient boundary layer all the way up to the front portion of the separation-bubble region (i.e. up to the end of the dead-air region in which linear evolution of the disturbance could be expected). The conclusion from the present work is that the primary instability mechanism in a separation bubble is inflectional in nature, and its origin can be traced back to upstream of the separation location. In other words, the inviscid inflectional instability of the separated shear layer should be logically seen as an extension of the instability of the upstream attached adverse-pressure-gradient boundary layer. This modifies the traditional view that pegs the origin of the instability in a separation bubble to the detached shear layer Outside the bubble, with its associated Kelvin-Helmholtz mechanism. We contendthat only when the separated shear layer has moved considerably away from the wall (and this happens near the maximum-height location of the mean bubble), a description by the Kelvin-Helmholtz instability paradigm, with its associated scaling principles, Could become relevant. We also propose a new scaling for the most amplified frequency for a wall-bounded shear layer in terms of the inflection-point height and the vorticity thickness and show it to be universal.
Resumo:
A model has been developed to predict heat transfer rates and sizes of bubbles generated during nucleate pool boiling. This model assumes conduction and a natural convective heat transfer mechanism through the liquid layer under the bubble and transient conduction from the bulk liquid. The temperature of the bulk liquid in the vicinity of the bubble is obtained by assuming a turbulent natural convection process from the hot plate to the liquid bulk. The shape of the bubble is obtained by equilibrium analysis. The bubble departure condition is predicted by a force balance equation. Good agreement has been found between the bubble radii predicted by the present theory and the ones obtained experimentally.
Resumo:
Creeping flow hydrodynamics combined with diffusion boundary layer equation are solved in conjunction with free-surface cell model to obtain a solution of the problem of convective transfer with surface reaction for flow parallel to an array of cylindrical pellets at high Peclet numbers and under fast and intermediate kinetics regimes. Expressions are derived for surface concentration, boundary layer thickness, mass flux and Sherwood number in terms of Damkoehler number, Peclet number and void fraction of the array. The theoretical results are evaluated numerically.
Resumo:
The paper deals with a method for the evaluation of exhaust muffers with mean flow. A new set of variables, convective pressure and convective mass velocity, have been defined to replace the acoustic variables. An expression for attenuation (insertion loss) of a muffler has been proposed in terms of convective terminal impedances and a velocity ratio, on the lines of the one existing for acoustic filters. In order to evaluate the velocity ratio in terms of convective variables, transfer matrices for various muffler elements have been derived from the basic relations of energy, mass and momentum. Finally, the velocity ratiocum-transfer matrix method is illustrated for a typical straight-through muffler.
Resumo:
This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.