49 resultados para concentration quenching model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluorescence properties of a homologous series of fluorescent alkylamines are described. The binding of the probes to crythrocyte membranes increases with the length of the alkyl chain. The probes are shown to interact more strongly with membranes than with protein and lipid model systems. The binding of the probes to the membrane is sensitive to the cation concentration of the medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an analysis of the interfacial tension model for the movement of the catalytically driven nanorod. The model considers the convective reaction-diffusion equation for the production and diffusion of oxygen around the bimetallic nanorod. We solve the equation and find the concentration difference, which drives the nanorod. We use our expression to calculate the force on the nanorod and find that the result is within 20% of the results found earlier [ W. Paxton et al., J. Am. Chem. Soc. 128, 14881 (2006) ] by an approximate method. Unlike the earlier results, our results are valid from short to long lengths of the nanorod.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a model of target location involving n noninteracting particles moving subdiffusively along a line segment (a generalization of a model introduced by Sokolov et al. [Biophys. J. 2005, 89, 895.]) provides a basis for understanding recent experiments by Pelta et al. [Phys. Rev. Lett. 2007, 98, 228302.] on the kinetics of diffusion-limited gel degradation. These experiments find that the time t(c) taken by the enzyme thermolysin to completely hydrolyze a gel varies inversely as roughly the 3/2 power of the initial enzyme concentration [E]. In general, however, this time would be expected to vary either as [E](-1) or as [E](-2), depending on whether the Brownian diffusion of the enzyme to the site of cleavage took place along the network chains (1-d diffusion) or through the pore spaces (3-d diffusion). In our model, the unusual dependence of t(c) on [E] is explained in terms of a reaction-diffusion equation that is formulated in terms of fractional rather than ordinary time derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground-state properties of the two-dimensional Hubbard model with point-defect disorder are investigated numerically in the Hartree-Fock approximation. The phase diagram in the p(point defect concentration)-delta(deviation from half filling) plane exhibits antiferromagnetic, spin-density-wave, paramagnetic, and spin-glass-like phases. The disorder stabilizes the antiferromagnetic phase relative to the spin-density-wave phase. The presence of U strongly enhances the localization in the antiferromagnetic phase. The spin-density-wave and spin-glass-like phases are weakly localized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidative dehydrogenation of ethylbenzene is gaining considerable importance in recent years as a promising alternative for styrene production. This vapour phase reaction has been studied over Pd-NaBr/Al2O3 catalyst in the temperature range 623-793 K in a fixed bed reactor. Kinetic analysis of this reaction has been done using a recursion procedure developed in this work from first principles. The advantage of this method is the absence of any restriction on the conversion level as it uses an integrated rate equation. The rate of styrene formation was found to follow a linear relationship with concentration of ethylbenzene and shows a Langmuir type dependence on the concentration of oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.