81 resultados para computational fluid dynamics (CFD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here on a series of laboratory experiments on plumes, undertaken with the object of simulating the effect of the heat release that occurs in clouds on condensation of water vapor. The experimental technique used for this purpose relies on ohmic heating generated in an electrically conducting plume fluid subjected to a suitable alternating voltage across specified axial stations in the plume flow [Bhat et al., 1989]. The present series of experiments achieves a value of the Richardson number that is toward the lower end of the range that characteristics cumulus clouds. It is found that the buoyancy enhancement due to heating disrupts the eddy structures in the flow and reduces the dilution owing to entrainment of ambient fluid that would otherwise have occurred in the central region of the plume. Heating also reduces the spread rate of the plume, but as it accelerates the flow as well, the overall specific mass flux in the plume does not show a very significant change at the heat input employed in the experiment. However, there is some indication that the entrainment rate (proportional to the streamwise derivative of the mass flux) is slightly higher immediately after heat injection and slightly lower farther downstream. The measurements support a previous proposal for a cloud scenario [Bhat and Narasimha, 1996] and demonstrate how fresh insights into certain aspects of the fluid dynamics of clouds may be derived from the experimental techniques employed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monsoonal regions of the world are characterized by a seasonal reversal in the direction of winds associated with the excursion of the equatorial trough (or the ITCZ) in response to the variation in the latitude of maximum insolation. This monsoonal circulation is a planetary scale phenomenon. However, the associated precipitation is critically dependent on the organization of the cumulus clouds (typically a few kilometers in horizontal extent) over the scale of synoptic vortices (typically a few hundred kilometers in horizontal extent). Thus modelling of the seasonal transitions and intraseasonal fluctuations requires an understanding of the fluid mechanics of these three scales of organizations and their interactions. The present paper is an attempt to outline the current state of understanding of these phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the parallelization of High Resolution flow solver on unstructured meshes, HIFUN-3D, an unstructured data based finite volume solver for 3-D Euler equations. For mesh partitioning, we use METIS, a software based on multilevel graph partitioning. The unstructured graph used for partitioning is associated with weights both on its vertices and edges. The data residing on every processor is split into four layers. Such a novel procedure of handling data helps in maintaining the effectiveness of the serial code. The communication of data across the processors is achieved by explicit message passing using the standard blocking mode feature of Message Passing Interface (MPI). The parallel code is tested on PACE++128 available in CFD Center

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work reported here is concerned with a detailed thermochemical evaluation of the flaming mode behaviour of a gasifier based stove. Determination of the gas composition over the fuel bed, surface and gas temperatures in the gasification process constitute principal experimental features. A simple atomic balance for the gasification reaction combined with the gas composition from the experiments is used to determine the CH(4) equivalent of higher hydrocarbons and the gasification efficiency (eta g). The components of utilization efficiency, namely, gasification-combustion and heat transfer are explored. Reactive flow computational studies using the measured gas composition over the fuel bed are used to simulate the thermochemical flow field and heat transfer to the vessel; hither-to-ignored vessel size effects in the extraction of heat from the stove are established clearly. The overall flaming mode efficiency of the stove is 50-54%; the convective and radiative components of heat transfer are established to be 45-47 and 5-7% respectively. The efficiency estimates from reacting computational fluid dynamics (RCFD) compare well with experiments. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of barrel stratification of air-fuel mixture is evaluated for a port gas injection (PGI) single cylinder spark ignition (SI) internal combustion (IC) engine using a transient three-dimensional computational fluid dynamic (CFD) model. The gaseous fuel used in the study is compressed natural gas (CNG). It is observed that compared to the premixed gas carburettor case, a substantial amount of in-cylinder stratification can be achieved with port gas injection system. A detailed parametric study is reported to understand the effect of the various injection parameters such as injection location, injection orientation, start of injection (SOT) and its duration, and injection rate. Furthermore, the best injection timing is evaluated for various load and speed cases. It is observed that the best stratification pattern can be achieved at 50% engine load. The injection location is observed to have a profound effect on the in-cylinder stratification pattern, and injection towards the side of the spark plug is observed to give a rich fuel-air mixture near the spark plug. It is also shown that there exists an optimal injection pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A blunt-nosed hypersonic missile mounted with a forward-facing cavity is a good alternative to reduce the stagnation heating rates. The effects of a forward-racing cavity on heat transfer and aerodynamic coefficients are addressed in this paper. Tests were carried out in hypersonic shock tunnel HST2, at a hypersonic Mach number of 8 using a 41 deg apex-angle blunt cone. The aerodynamic forces on the test model with and without a forward-facing cavity at various angles of attack are measured by using an internally mountable accelerometer force balance system. Heat flux measurements have been carried out on the test model with and without a forward-facing cavity of the entire surface at zero degree angle of attack with platinum sensors. A numerical simulation was also carried out using the computational fluid dynamics code (CFX-Ansys 5.7). An important result of this study is that the smaller cavity diameter has the highest lift-to-drag ratio, whereas the medium cavity has the highest heat flux reduction. Theshock structure around the test model has also been visualized using the Schlieren flow visualization technique. The visualized shock structure and the measured aerodynamic forces on the missile-shaped body with cavity configurations agree well with the axisymmetric numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new framework is proposed in this work to solve multidimensional population balance equations (PBEs) using the method of discretization. A continuous PBE is considered as a statement of evolution of one evolving property of particles and conservation of their n internal attributes. Discretization must therefore preserve n + I properties of particles. Continuously distributed population is represented on discrete fixed pivots as in the fixed pivot technique of Kumar and Ramkrishna [1996a. On the solution of population balance equation by discretization-I A fixed pivot technique. Chemical Engineering Science 51(8), 1311-1332] for 1-d PBEs, but instead of the earlier extensions of this technique proposed in the literature which preserve 2(n) properties of non-pivot particles, the new framework requires n + I properties to be preserved. This opens up the use of triangular and tetrahedral elements to solve 2-d and 3-d PBEs, instead of the rectangles and cuboids that are suggested in the literature. Capabilities of computational fluid dynamics and other packages available for generating complex meshes can also be harnessed. The numerical results obtained indeed show the effectiveness of the new framework. It also brings out the hitherto unknown role of directionality of the grid in controlling the accuracy of the numerical solution of multidimensional PBEs. The numerical results obtained show that the quality of the numerical solution can be improved significantly just by altering the directionality of the grid, which does not require any increase in the number of points, or any refinement of the grid, or even redistribution of pivots in space. Directionality of a grid can be altered simply by regrouping of pivots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Upwind-Least Squares Finite Difference (LSFD-U) scheme has been successfully applied for inviscid flow computations. In the present work, we extend the procedure for computing viscous flows. Different ways of discretizing the viscous fluxes are analysed for the positivity, which determines the robustness of the solution procedure. The scheme which is found to be more positive is employed for viscous flux computation. The numerical results for validating the procedure are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have presented a new low dissipative kinetic scheme based on a modified Courant Splitting of the molecular velocity through a parameter φ. Conditions for the split fluxes derived based on equilibrium determine φ for a one point shock. It turns out that φ is a function of the Left and Right states to the shock and that these states should satisfy the Rankine-Hugoniot Jump condition. Hence φ is utilized in regions where the gradients are sufficiently high, and is switched to unity in smooth regions. Numerical results confirm a discrete shock structure with a single interior point when the shock is aligned with the grid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.