28 resultados para community hub
Resumo:
Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a defining negative moisture-advection feedback that acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to significant circulation changes in response to external radiative forcing perturbations. When total aerosol loading (both absorbing and scattering aerosols) is prescribed, dust and black carbon aerosols are found to cause significant atmospheric heating over the monsoon region but the aerosol-induced weakening of meridional lower tropospheric temperature gradient (leading to weaker summer monsoon rainfall) more than offsets the increase in summer-time rainfall resulting from the atmospheric heating effect of absorbing aerosols, leading to a net decrease of summer monsoon rainfall. Further, we have carried out climate simulations with globally constant AODs and also with the constant AODs over the extended Indian region replaced by realistic AODs. Regional aerosol radiative forcing perturbations over the Indian region is found to have impact not only over the region of loading but over remote tropical regions as well. This warrants the need to prescribe realistic aerosol properties in strategic regions such as India in order to accurately assess the aerosol impact.
Resumo:
The influence of geometric parameters, such as blade profile and hub geometry on axial flow turbines for micro hydro application remains poorly characterized. This paper first introduces a holistic theoretical model for studying the hydraulic phenomenon resulting from geometric modification to the blades. It then describes modification carried out on two runner stages, of which one has untwisted blades and the other has twisted blades obtained by modifying the inlet hub. The experimental results showed that the performance of the untwisted blade runner was satisfactory with a maximum efficiency of 68%. However, positive effects of twisted blades were clearly evident with an efficiency rise of more than 2%. This study also looks into the possible limitations of the model and suggests the extension of the experimental work and the use of computational tools to conduct a progressive validation of all experimental findings, especially on the flow physics within the hub region and the slip phenomena. The paper finally underlines the importance of developing a standardization philosophy for axial flow turbines specific for micro hydro requirements. DOI:10.1061/(ASCE)EY.1943-7897.0000060. (C) 2012 American Society of Civil Engineers.
Resumo:
Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.
Resumo:
Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of alpha-toxin than did the proliferative supernatants. Addition of alpha-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, delta-toxin or phenol soluble modulin alpha-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes.
Resumo:
Global conservation policy is increasingly debating the feasibility of reconciling wildlife conservation and human resource requirements in land uses outside protected areas (PAs). However, there are few quantitative assessments of whether or to what extent these `wildlife-friendly' land uses fulfill a fundamental function of PAs-to separate biodiversity from anthropogenic threats. We distinguish the role of wildlife-friendly land uses as being (a) subsidiary, whereby they augment PAs with secondary habitat, or (b) substitutive, wherein they provide comparable habitat to PAs. We tested our hypotheses by investigating the influence of land use and human presence on space-use intensity of the endangered Asian elephant (Elephas maximus) in a fragmented landscape comprising PAs and wildlife-friendly land uses. We applied multistate occupancy models to spatial data on elephant occurrence to estimate and model the overall probability of elephants using a site, and the conditional probability of high-intensity use given that elephants use a site. The probability of elephants using a site regardless of intensity did not vary between PAs and wildlife-friendly land uses. However, high-intensity use declined with distance to PM, and this effect was accentuated by an increase in village density. Therefore, while wildlife-friendly land uses did play a subsidiary conservation role, their potential to substitute for PAs was offset by a strong human presence. Our findings demonstrate the need to evaluate the role of wildlife-friendly land uses in landscape-scale conservation; for species that have conflicting resource requirements with people, PAs are likely to provide crucial refuge from growing anthropogenic threats. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demand-supply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demand supply matching within a community, and, (2) determine which of these options can suitably plug the existing demand-supply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In both single- and mixed-species social groups, certain participants are known to play important roles in providing benefits. Identifying these participants is critical for understanding group dynamics, but is often difficult with large roving social groups in the wild. Here, we develop a new approach to characterize roles in social groups and apply it to mixed-species bird flocks (flocks hereafter) in an Indian tropical evergreen forest. Two types of species, namely intraspecifically gregarious and sallying species, are thought to play important roles in flocks because studies have shown they attract other flock participants. However, it is unclear why these types are attractive and whether they are essential for flock formation. We address these questions by focusing on the composition of the subset of flocks containing only two species each. In two-species flocks, it is reasonable to assume that at least one species obtains some kind of benefit. Therefore, only those species combinations that result in benefit to at least one species should occur as two-species flocks. Using data from 540 flocks overall, of which 158 were two-species flocks, we find that intraspecifically gregarious species are disproportionately represented in two-species flocks and always lead flocks when present, and that flocks containing them are joined significantly more by other species. Our results suggest that intraspecifically gregarious species are likely to be the primary benefit providers in flocks and are important for tropical flock formation. Our study also provides a new approach to understanding importance in other mixed-species and single-species social groups.
Resumo:
Termites, herbivores and fire are recognized as major guilds that structure woody plant communities in African savanna and woodland ecosystems. An understanding of their interaction is crucial to design appropriate management regimes. The aim of this study was to evaluate the long-term impacts of herbivore, fire and termite activities on regeneration of trees. Permanent experimental quadrats were established in 1992 in the Sudanian woodland of Burkina Faso subjected to grazing by livestock and annual early fire and the control. Within the treatment quadrats, an inventory of the woody undergrowth community was conducted on termitaria occupied by Macrotermes subhyalinus, extended termitosphere (within 5 m radius from the mound base) and adjacent area (beyond 5 m from the mound base). Hierarchical analysis was performed to determine significant differences in species richness, abundance and diversity indices among vegetation patches within fire and herbivory treatments. Grazed quadrats had significantly (P < 0.001) more species and stem density of woody undergrowth than non-grazed quadrats but maintained similar level of species richness and stem density of woody undergrowth on termitaria. There were not significant differences (P>0.05) in species richness and stem density between burnt and unburnt quadrats. Termitaria supported a highly diverse woody undergrowth with higher stem density than either the extended termitosphere or rest of quadrats. The density of woody undergrowth was significantly related with mature trees of selected species on termitaria (R-2 = 0.593; P<0.001) than that on the extended termitosphere (R-2 = 0.333; P<0.001) and adjacent area (R-2 = 0.197; P<0.001). It can be concluded that termites facilitate the regeneration of woody species while grazing and annual early fire play a minor role in the regeneration of woody species. The current policy that prohibits grazing should be revised to accommodate the interests of livestock herders. (C) 2014 Elsevier GmbH. All rights reserved.
Resumo:
How similar species co-exist in nature is a fundamental question in community ecology. Resource partitioning has been studied in desert lizard communities across four continents, but data from South Asia is lacking. We used area-constrained visual encounter surveys to study community composition and spatial and temporal resource partitioning in a lizard community during summer in the Thar Desert, western India, addressing an important biogeographic gap in knowledge. Twelve one-hectare grids divided into 25 m x 25 m plots were placed across four habitats barren dunes, stabilized dunes, grassland, and rocky hills. We recorded 1039 sightings of 12 species during 84 sampling sessions. Lizard abundance decreased in the order stabilized dunes > grassland > barren dunes > rocky hills; richness was in roughly the opposite order. Resource partitioning was examined for the seven commonest species. Overall spatial overlap was low (<0.6) between species pairs. Overlap was higher within habitats, but species showed finer separation through use of different microhabitat categories and specific spatial resources, as well as by positioning at different distances to vegetation. Diurnal species were also separated by peak time of activity. Space appears to be an important resource dimension facilitating coexistence in this desert lizard community. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The coupling of endocytosis and exocytosis underlies fundamental biological processes ranging from fertilization to neuronal activity and cellular polarity. However, the mechanisms governing the spatial organization of endocytosis and exocytosis require clarification. Using a quantitative imaging-based screen in budding yeast, we identified 89 mutants displaying defects in the localization of either one or both pathways. High-resolution single-vesicle tracking revealed that the endocytic and exocytic mutants she4 Delta and bud6 Delta alter post-Golgi vesicle dynamics in opposite ways. The endocytic and exocytic pathways display strong interdependence during polarity establishment while being more independent during polarity maintenance. Systems analysis identified the exocyst complex as a key network hub, rich in genetic interactions with endocytic and exocytic components. Exocyst mutants displayed altered endocytic and post-Golgi vesicle dynamics and interspersed endocytic and exocytic domains compared with control cells. These data are consistent with an important role for the exocyst in coordinating endocytosis and exocytosis.
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.
Resumo:
During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.
Resumo:
Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions.